334
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

A new approach for vulnerability assessment of coastal aquifers using combined index

, &
Pages 1681-1703 | Received 21 Oct 2019, Accepted 28 Jun 2020, Published online: 30 Jul 2020

References

  • Abd-Elhamid H, Javadi A, Abdelaty I, Sherif M. 2016. Simulation of seawater intrusion in the Nile Delta aquifer under the conditions of climate change. Hydrol Res. 47(6):1198–1210.
  • Aller L, Bennet T, Lehr JH, Petty RJ, Hackett G. 1987. DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrogeological settings. United States Environmental Protection Agency.
  • Anane M, Abidi B, Lachaal F, Limam A, Jellali S. 2013. GIS-based DRASTIC. Pesticide DRASTIC and the susceptibility index (SI): comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia, Hydrogeol J. 21:715–731.
  • Ataie-Ashtiani B, Ketabchi H. 2011. Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifers. Water Resour Manage. 25(1):165–190.
  • Babiker IS, Mohamed MAA, Hiyama T, Kato K. 2005. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Sci Total Environ. 34 (1–3):127–140.
  • Bear J. 1979. Hydraulics of groundwater. New York (NY): McGraw-Hill.
  • Bocanegra E, Da Silva G, Custodio E, Manzano M, Montenegro S. 2010. State of knowledge of coastal aquifer management in South America. Hydrogeol J. 18(1):261–267.
  • Bordbar M, Neshat A, Javadi S. 2019a. A new hybrid framework for optimization and modification of groundwater vulnerability in coastal aquifer. Environ Sci Pollut Res Int. 26(21):21808–21827.
  • Bordbar M, Neshat A, Javadi S. 2019b. Modification of the GALDIT framework using statistical and entropy models to assess coastal aquifer vulnerability. Hydrol Sci J. 64(9):1117–1128.
  • Bouderbala A, Remini B, Saaed Hamoudi A, Pulido-Bosch A. 2016. Assessment of groundwater vulnerability and quality in coastal aquifers: a case study (Tipaza, North Algeria). Arab J Geosci. 9(3):181.
  • Chachadi, AG, Lobo Ferreira, JP.. 2001. Seawater intrusion vulnerability mapping of aquifer using the GALDIT method. Coastin. 4:7–9.
  • Chang SW, Chung IM, Kim MG, Tolera M, Koh GW. 2019. Application of GALDIT in assessing the seawater intrusion vulnerability of Jeju Island, South Korea. Water. 11(9):1824.
  • Custodio E. 2010. Coastal aquifers of Europe: an overview. Hydrogeol J. 18(1):269–280.
  • Herzberg A. 1901. Die Wasserversorgung einiger Nordseebäder [The water supply of some spas at the North Sea]. J Gasbeleuch Wasserversorg. 44(44):815–819.
  • Ivkovic KM, Dixon-Jain P, Marshall SK, Sundaram B, Clarke JDA, Wallace L, Werner AD. 2013. A national-scale vulnerability assessment of seawater intrusion: literature review, data review, and method development. Adelaide (Australia): Geoscience Australia, Canberra, and National Centre for Groundwater Research and Training.
  • Jafari F, Javadi S, Golmahammadi G, Mohammadi K, Khodadadi A, Mohammadzadeh M. 2016. Risk prediction and assessment of groundwater pollution using indexing and analytical methods and Monte Carlo technique. Environ Earth Sci. 75:491.
  • Javadi S, Hashemy SM, Mohammadi K, Howard KWF, Neshat A. 2017. Classification of aquifer vulnerability using K-means cluster analysis. J Hydrol. 549:27–37.
  • Javadi S, Kavehkar N, Mousavizadeh MH, Mohammadi K. 2011. Modification of DRASTIC model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas. J Agric Sci Technol. 13:239–249.
  • Jones BF, Vengosh A, Rosenthal E, Yechieli Y, et al. 1999. Geochemical investigations. In: Bear J, editor. Seawater intrusion in coastal aquifers. Dordrecht (The Netherlands): Kluwer Academic Publisher; p. 51–71.
  • Kardan Moghaddam H, Jafari F, Javadi S. 2016. Vulnerability evaluation of a coastal aquifer via GALDIT model and comparison with DRASTIC index using quality parameters. Hydrol. Sci. J. 62(1):1–146.
  • Kazakis N, Voudouris K. 2015. Groundwater vulnerability and pollution risk assessment of porous aquifers to nitrate: modifying the DRASTIC method using quantitative parameters. J Hydrol. 525:13–25.
  • Ketabchi H, Ataie-Ashtiani B. 2015. Review: coastal groundwater optimization – advances, challenges, and practical solutions. Hydrogeol J. 23(6):1129–1154.
  • Kopsiaftis G, Tigkas D, Christelis V, Vangelis H. 2017. Assessment of drought impacts on semi-arid coastal aquifers of the Mediterranean. J Arid Environ. 137:7–15.
  • Langevin CD, Thorne DT, Dausman AM, Sukop MC, Guo W. 2008. SEAWAT Version 4: a computer program for simulation of multi‐species solute and heat transport. Reston (VA): U.S. Geological Survey. (Techniques and Methods Book 6-A22).
  • Luoma S, Okkonen J. 2014. Impacts of future climate change and Baltic sea level rise on groundwater recharge, groundwater levels, and surface leakage in the Hanko aquifer in southern Finland. Water. 6 (12):3671–3700.
  • Luoma S, Okkonen J, Korkka-Niemi K. 2017. Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland. Hydrogeol J. 25(1):203–222.
  • Manivannan V, Elango L. 2019. Seawater intrusion and submarine groundwater discharge along the Indian coast. Environ Sci Pollut Res Int. 26(31):31592–31517.
  • Margat J. 1968. Vulnerabilite des nappes d’eau souterraine a la pollution [Groundwater vulnerability to contamination]. Bases de al cartography, (Doc.) 68 SGC 198 HYD, BRGM, Orleans, France.
  • Mehdizadeh SS, Karamalipour SE, Asoodeh R. 2017. Sea level rise effect on seawater intrusion into layered coastal aquifers (simulation using dispersive and sharp-interface approaches). Ocean Coast Manage. 138:11–18.
  • Moazamnia M, Hassanzadeh Y, Nadiri AA, Sadeghfam S. 2020. Vulnerability indexing to saltwater intrusion from models at two levels using Artificial Intelligence Multiple Model (AIMM). J Environ Manage. 255:109871.
  • Narany TS, Ramli MF, Fakharian K, Aris AZ. 2016. A GIS-index integration approach to groundwater suitability zoning for irrigation purposes. Arab J Geosci. 9(7):1–15.
  • Neshat A, Pradhan B, Pirasteh S, Shafri HZM. 2014a. Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area. Environ Earth Sci. 71(7):3119–3131.
  • Neshat A, Pradhan B, Shafri HZM. 2014b. An integrated GIS based statistical model to compute groundwater vulnerability index for decision maker in agricultural area. J Indian Soc Remote Sens. 42(4):777–788.
  • Neshat A, Pradhan B, Javadi S. 2015. Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: an example from Kerman Plain, Iran. Comput Environ Urban Syst. 50:66–73.
  • Nixdorf E, Sun Y, Lin M, Kolditz O. 2017. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin. Sci Total Environ. 605–606:598–609.
  • Parizi E, Hosseini SM, Ataie-Ashtiani B, Simmons CT. 2019. Vulnerability mapping of coastal aquifers to seawater intrusion: review, development and application. J Hydrol. 570:555–573.
  • Pinder GF, Cooper HH. 1970. A numerical technique for calculating the transient position of the saltwater front. Water Resour Res. 6(3):875–882.
  • Post V, Abarca E. 2010. Preface: saltwater and freshwater interactions in coastal aquifers. Hydrogeol J. 18(1):1–4.
  • Reinelt P. 2020. Spatial-dynamic seawater intrusion and pumping cost externalities in a confined aquifer. Resour Energy Econ. 59:101117.
  • Rossiter HMA, Owusu PA, Awuah E, MacDonald AM, Schafer AI. 2010. Chemical drinking water quality in Ghana: water costs and scope for advanced treatment. Sci Total Environ. 408(11):2378–2386.
  • Singh A, Srivastav SK, Kumar S, Chakrapani GJ. 2015. A modified-DRASTIC model (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized environment in Lucknow, India. Environ Earth Sci. 74:5475–5490.
  • Todd DK, Mays LW. 2005. Groundwater hydrology. 3rd ed. Hoboken (NJ): John Wiley & Sons
  • Trabelsi N, Triki I, Hentati I, Zairi M. 2016. Aquifer vulnerability and seawater intrusion risk using GALDIT, GQISWI and GIS: case of a coastal aquifer in Tunisia. Environ. Earth Sci. 75(8):669.
  • Watson TA, Werner AD, Simmons CT. 2010. Transience of seawater intrusion in response to sea-level rise. Water Resour Res. 46(12):W12533.
  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA. 2013. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51(1):3–26.
  • Wu J, Xue Y, Liu P, Wang J, Jiang Q, Shi H. 1993. Sea-water intrusion in the coastal area of Laizhou Bay, China: 2. Sea-water intrusion Monitoring. Groundwater. 31(5):740–745.
  • Yu X, Xin P, Lu C. 2019. Seawater intrusion and retreat in tidally-affected unconfined aquifers: laboratory experiments and numerical simulations. Adv Water Resour. 132:103393.
  • Zghibi A, Merzougui A, Chenini I, Ergaieg K, Zouhri L, Tarhouni J. 2016. Groundwater vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC index method in GIS environment. Groundwater Sustainable Dev. 2–3:169–181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.