317
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Multi-sensor datasets-based optimal integration of spectral, textural, and morphological characteristics of rocks for lithological classification using machine learning models

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 6004-6032 | Received 21 Nov 2020, Accepted 05 Apr 2021, Published online: 24 May 2021

References

  • Abedi M, Norouzi G-H, Bahroudi A. 2012. Support vector machine for multi-classification of mineral prospectivity areas. Comput Geosci. 46:272–283.
  • Adep RN, Vijayan AP, Shetty A, Ramesh H. 2016. Performance evaluation of hyperspectral classification algorithms on AVIRIS mineral data. Perspect Sci. 8:722–726.
  • Amer R, Kusky T, Ghulam A. 2010. Lithological mapping in the Central Eastern Desert of Egypt using ASTER data. J Afr Earth Sci. 56(2–3):75–82.
  • Archibald R, Fann G. 2007. Feature selection and classification of hyperspectral images with support vector machines. IEEE Geosci Remote Sensing Lett. 4(4):674–677.
  • Bachri I, Hakdaoui M, Raji M, Teodoro AC, Benbouziane A. 2019. Machine learning algorithms for automatic lithological mapping using remote sensing data: a case study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. IJGI. 8(6):248.
  • Batista GE, Prati RC, Monard MC. 2004. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor Newsl. 6(1):20–29.
  • Banerjee DM, Khan MWY, Srivastava N, Saigal GC. 1982. Precambrian phosphorites in the Bijawar rocks of Hirapur-Bassia areas, Sagar district, Madhya Pradesh, India. Miner Deposita 17(3):349–362.
  • Baykan NA, Yılmaz N. 2010. Mineral identification using color spaces and artificial neural networks. Comput Geosci. 36(1):91–97.
  • Bennasar M, Hicks Y, Setchi R. 2015. Feature selection using joint mutual information maximization. Expert Syst Appl. 42(22):8520–8532.
  • Bergstra J, Bengio Y. 2012. Random search for hyper-parameter optimization. J Machine Learn Res. 13(1):281–305.
  • Bergstra JS, Bardenet R, Bengio Y, Kégl B. 2011. Algorithms for hyper-parameter optimization. Adv Neural Inform Process Syst. 24:2546–2554.
  • Bhattacharya S, Kumar H, Guha A, Dagar AK, Pathak S, (Pasricha) KR, Mondal S, Vinod Kumar K, Farrand W, Chatterjee S, et al. 2019. Potential of airborne hyperspectral data for geo-exploration over parts of different geological/metallogenic provinces in India based on AVIRIS-NG observations. Curr Sci. 116(7):1143–1156.
  • Bishop CA, Liu JG, Mason PJ. 2011. Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int J Remote Sens. 32(9):2409–2426.
  • Boardman JW. 1998. Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering. Paper presented at the: Summaries of the seventh JPL Airborne Geoscience Workshop. USA: JPL Publication.
  • Breiman L. 2001. Random forests. Machine Learn. 45(1):5–32.
  • Carranza EJM, Laborte AG. 2015. Random forest predictive modeling of mineral prospectivity with small number of prospects and data with missing values in Abra (Philippines). Comput Geosci. 74:60–70.
  • Carrino TA, Crósta AP, Toledo CLB, Silva AM. 2018. Hyperspectral remote sensing applied to mineral exploration in southern Peru: A multiple data integration approach in the Chapi Chiara gold prospect. Int J Appl Earth Obs Geoinf. 64:287–300.
  • Chang C-I. 1999. Spectral information divergence for hyperspectral image analysis. IEEE 1999. International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No. 99CH36293), June 28–July 2, Germany.
  • Chica-Olmo M, Abarca-Hernandez F. 2000. Computing geostatistical image texture for remotely sensed data classification. Comput Geosci. 26(4):373–383.
  • Clark RN. 1999. Spectroscopy of rocks and minerals, and principles of spectroscopy. Manual Remote Sens. 3(3-58):2–2.
  • Cloutis EA. 1996. Review article hyperspectral geological remote sensing: evaluation of analytical techniques. Int J Remote Sens. 17(12):2215–2242.
  • Cracknell MJ, Reading AM. 2014. Geological mapping using remote sensing data: a comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Comput Geosci. 63:22–33.
  • Dash M, Liu H. 1997. Feature selection for classification. IDA. 1(3):131–156.
  • De Alban JDT, Connette GM, Oswald P, Webb EL. 2018. Combined Landsat and L-band SAR data improves land cover classification and change detection in dynamic tropical landscapes. Remote Sens. 10(2):306.
  • De Martinao M, Causa F, Serpico SB. 2003. Classification of optical high resolution images in urban environment using spectral and textural information. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. IEEE (Cat. No. 03CH37477), July 21–25, France.
  • Dian Y, Li Z, Pang Y. 2015. Spectral and texture features combined for forest tree species classification with airborne hyperspectral imagery. J Indian Soc Remote Sens. 43(1):101–107.
  • Dong J, Xiao X, Sheldon S, Biradar C, Xie G. 2012. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. ISPRS J Photogramm Remote Sens. 74:20–33.
  • Feng J, Rogge D, Rivard B. 2018. Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data. Int J Appl Earth Obs Geoinf. 64:340–353.
  • Franklin S, Hall R, Moskal L, Maudie A, Lavigne M. 2000. Incorporating texture into classification of forest species composition from airborne multispectral images. Int J Remote Sens. 21(1):61–79.
  • Gad S, Kusky T. 2007. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res. 11(3):326–335.
  • Ge W, Cheng Q, Tang Y, Jing L, Gao C. 2018. Lithological classification using sentinel-2A data in the Shibanjing ophiolite complex in inner Mongolia, China. Remote Sens. 10(4):638.
  • Gomez C, Delacourt C, Allemand P, Ledru P, Wackerle R. 2005. Using ASTER remote sensing data set for geological mapping, in Namibia. Phys Chem Earth A/B/C 30(1–3):97–108.
  • Goodarzi Mehr S, Ahadnejad V, Abbaspour RA, Hamzeh M. 2013. Using the mixture-tuned matched filtering method for lithological mapping with Landsat TM5 images. Int J Remote Sens. 34(24):8803–8816.
  • Grebby S, Naden J, Cunningham D, Tansey K. 2011. Integrating airborne multispectral imagery and airborne LiDAR data for enhanced lithological mapping in vegetated terrain. Remote Sens Environ. 115(1):214–226.
  • Grinand C, Rakotomalala F, Gond V, Vaudry R, Bernoux M, Vieilledent G. 2013. Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sens Environ. 139:68–80.
  • Gstaiger V, Huth J, Gebhardt S, Wehrmann T, Kuenzer C. 2012. Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data. Int J Remote Sens. 33(22):7291–7304.
  • Guha A, Chatterjee S, Oommen T, Kumar KV, Roy SK. 2021. Synergistic use of ASTER, L-band ALOS PALSAR, and Hyperspectral AVIRIS-NG data for exploration of lode type gold deposit–a study in Hutti Maski Schist Belt, India. Ore Geol Rev. 128:103818.
  • Guyon I, Gunn S, Ben-Hur A, Dror G. 2004. Result analysis of the NIPS 2003 feature selection challenge. Adv Neural Inform Process Syst. 17:545–552.
  • Hadigheh SMH, Ranjbar H. 2013. Lithological mapping in the eastern part of the central Iranian volcanic belt using combined ASTER and IRS data. J Indian Soc Remote Sens. 41(4):921–931.
  • Hajnsek I, Pottier E, Cloude SR. 2003. Inversion of surface parameters from polarimetric SAR. IEEE Trans Geosci Remote Sens. 41(4):727–744.
  • Haralick RM, Shanmugam K, Dinstein IH. 1973. Textural features for image classification. IEEE Trans Syst Man Cybern. SMC-3(6):610–621.
  • Harris J, Rogge D, Hitchcock R, Ijewliw O, Wright D. 2005. Mapping lithology in Canada's Arctic: application of hyperspectral data using the minimum noise fraction transformation and matched filtering. Can J Earth Sci. 42(12):2173–2193.
  • Hewson R, Cudahy T, Mizuhiko S, Ueda K, Mauger A. 2005. Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sens Environ. 99(1-2):159–172.
  • Jin H, Li P, Fan W. 2008. Land cover classification using multitemporal CHRIS/PROBA images and multitemporal texture. IGARSS 2008-2008. IEEE International Geoscience and Remote Sensing Symposium.
  • Jones RR, McCaffrey KJ, Wilson RW, Holdsworth RE. 2004. Digital field data acquisition: toward increased quantification of uncertainty during geological mapping. Geolog Soc (Lond). 239(1):43–56.
  • Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection. IJCAI, 1137–1145.
  • Kruse FA. 1998. Advances in hyperspectral remote sensing for geologic mapping and exploration. Proceedings 9th Australasian Remote Sensing Conference, July 20–24, Australia.
  • Kruse FA, Lefkoff A, Boardman J, Heidebrecht K, Shapiro A, Barloon P, Goetz A. 1993. The spectral image processing system (SIPS)‐interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ. 44(2–3):145–163.
  • Kruse FA, Perry SL, Caballero A. 2006. District-level mineral survey using airborne hyperspectral data, Los Menucos, Argentina. Ann Geophys. 49(1):83–92.
  • Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, Mayer Z, Kenkel B, Team RC, Benesty M. 2020. Caret: classification and regression training. Package ‘caret’. The R Journal. 2020:223.
  • Kumar C, Chatterjee S, Oommen T. 2020a. Mapping hydrothermal alteration minerals using high-resolution AVIRIS-NG hyperspectral data in the Hutti-Maski gold deposit area, India. Int J Remote Sens. 41(2):794–812.
  • Kumar C, Chatterjee S, Oommen T, Guha A. 2020b. Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. Int J Appl Earth Obs Geoinf. 86:102006.
  • Kumar C, Shetty A, Raval S, Sharma R, Ray PC. 2015. Lithological discrimination and mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India. Procedia Earth Planet Sci. 11:180–188.
  • Lary DJ, Alavi AH, Gandomi AH, Walker AL. 2015. Machine learning in geosciences and remote sensing. Geosci Front. 30:1e9.
  • Li N, Frei M, Altermann W. 2011. Textural and knowledge-based lithological classification of remote sensing data in Southwestern Prieska sub-basin, Transvaal Supergroup, South Africa. J Afr Earth Sci. 60(4):237–246.
  • Lillesand T, Kiefer RW, Chipman J. 2015. Remote sensing and image interpretation. Hoboken (NJ): John Wiley and Sons.
  • Liu C-a, Chen Z-x, Yun S, Chen J-S, Hasi T, Pan H-z. 2019. Research advances of SAR remote sensing for agriculture applications: a review. J Integr Agric. 18(3):506–525.
  • Luo G. 2016. A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw Model Anal Health Inform Bioinform. 5(1):18.
  • Masoumi F, Eslamkish T, Abkar AA, Honarmand M, Harris JR. 2017. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. J Afr Earth Sci. 129:445–457.
  • Maxwell AE, Warner TA, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. Int J Remote Sens. 39(9):2784–2817.
  • Michie D, Spiegelhalter DJ, Taylor C. 1994. Machine learning. Neural Stat Classif. 13(1994):1–298.
  • Mjolsness E, DeCoste D. 2001. Machine learning for science: state of the art and future prospects. Science 293(5537):2051–2055.
  • Mohri M, Rostamizadeh A, Talwalkar A. 2018. Foundations of machine learning. MIT Press; p. 1–7.
  • Oommen T, Baise LG, Vogel RM. 2011. Sampling bias and class imbalance in maximum-likelihood logistic regression. Math Geosci. 43(1):99–120.
  • Othman AA, Gloaguen R. 2014. Improving lithological mapping by SVM classification of spectral and morphological features: The discovery of a new chromite body in the Mawat ophiolite complex (Kurdistan, NE Iraq). Remote Sens. 6(8):6867–6896.
  • Othman AA, Gloaguen R. 2017. Integration of spectral, spatial and morphometric data into lithological mapping: a comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J Asian Earth Sci. 146:90–102.
  • Padma S, Sanjeevi S. 2014b. Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis. Int J Appl Earth Obs Geoinf. 32:138–151.
  • Pal M. 2005. Random forest classifier for remote sensing classification. Int J Remote Sens. 26(1):217–222.
  • Pal M. 2008. Multi-class approaches for support vector machine based land cover classification. arXiv preprint arXiv:0802.2411.
  • Pal M, Foody GM. 2010. Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens. 48(5):2297–2307.
  • Pal S, Majumdar T, Bhattacharya A. 2007. Usage of ERS SAR data over the Singhbhum shear zone, India for structural mapping and tectonic studies. Geocarto Int. 22(4):285–295.
  • Pour AB, Hashim M. 2014a. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration. SpringerPlus 3(1):130.
  • Pour AB, Hashim M. 2014b. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia. Adv Space Res. 54(4):644–654.
  • Pour AB, Hashim M. 2015. Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geol Rev. 64:13–22.
  • Pour AB, Park Y, Park T-YS, Hong JK, Hashim M, Woo J, Ayoobi I. 2019. Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions. Geocarto Int. 34(7):785–816.
  • Qin Y, Xiao X, Dong J, Zhang G, Shimada M, Liu J, Li C, Kou W, Moore B. III, 2015. Forest cover maps of China in 2010 from multiple approaches and data sources: PALSAR, Landsat, MODIS, FRA, and NFI. ISPRS J Photogramm Remote Sens. 109:1–16.
  • Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M, Chica-Rivas M. 2015. Machine learning predictive models for mineral prospectivity: an evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol Rev. 71:804–818.
  • Rucci A, Ferretti A, Monti Guarnieri A, Rocca F. 2012. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 120:156–163.
  • Schmullius C, Evans D. 1997. Review article Synthetic aperture radar (SAR) frequency and polarization requirements for applications in ecology, geology, hydrology, and oceanography: a tabular status quo after SIR-C/X-SAR. Int J Remote Sens. 18(13):2713–2722.
  • Schölkopf B, Smola AJ, Bach F. 2002. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press; p. 187–226.
  • Seifi Majdar R, Ghassemian H. 2017. A probabilistic SVM approach for hyperspectral image classification using spectral and texture features. Int J Remote Sens. 38(15):4265–4284.
  • Tan Q, Gao J, Li X. 2009. Application of sar remote sensing data to lithological mapping: a case study in railway geological survey. IEEE International Geoscience and Remote Sensing Symposium, July 12–17, South Africa.
  • Thompson S, Fueten F, Bockus D. 2001. Mineral identification using artificial neural networks and the rotating polarizer stage. Comput Geosci. 27(9):1081–1089.
  • Van der Meer FD, Van der Werff HM, Van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, Van Der Meijde M, Carranza EJM, De Smeth JB, Woldai T. 2012. Multi-and hyperspectral geologic remote sensing: A review. Int J Appl Earth Obs Geoinf. 14(1):112–128.
  • van Zyl JJ, Zebker HA, Elachi C. 1990. Polarimetric SAR applications. Radar Polarimetry Geosci Appl. 315:360.
  • Vapnik VN. 1999. An overview of statistical learning theory. IEEE Trans Neural Networks 10(5):988–999.
  • Walker WS, Stickler CM, Kellndorfer JM, Kirsch KM, Nepstad DC. 2010. Large-area classification and mapping of forest and land cover in the Brazilian Amazon: a comparative analysis of ALOS/PALSAR and Landsat data sources. IEEE J Sel Top Appl Earth Observations Remote Sens. 3(4):594–604.
  • Wang W, Ren X, Zhang Y, Li M. 2018. Deep learning based lithology classification using dual-frequency Pol-SAR data. Appl Sci. 8(9):1513.
  • Waske B, Benediktsson JA, Árnason K, Sveinsson JR. 2009. Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Can J Remote Sens. 35(sup1):S106–S116.
  • Waske B, van der Linden S, Benediktsson JA, Rabe A, Hostert P. 2010. Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans Geosci Remote Sens. 48(7):2880–2889.
  • Wei J, Liu X, Liu J. 2016. Integrating textural and spectral features to classify silicate-bearing rocks using Landsat 8 data. Appl Sci. 6(10):283.
  • Williamson DF, Parker RA, Kendrick JS. 1989. The box plot: a simple visual method to interpret data. Ann Intern Med. 110(11):916–921.
  • Wu H, Zhang X, Xie H, Kuang Y, Ouyang G. 2013. Classification of solder joint using feature selection based on Bayes and support vector machine. IEEE Trans Compon Packag Manuf Technol. 3(3):516–522.
  • Yu L, Liu H. 2003. Feature selection for high-dimensional data: A fast correlation-based filter solution. Proceedings of the 20th International Conference on Machine Learning (ICML-03), August 21–24, US.
  • Yu L, Porwal A, Holden E-J, Dentith MC. 2012. Toward automatic lithological classification from remote sensing data using support vector machines. Comput Geosci. 45:229–239.
  • Zhang X, Li P. 2014. Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Int J Appl Earth Obs Geoinf. 31:95–109.
  • Zuhlke M, Fomferra N, Brockmann C, Peters M, Veci L, Malik J, Regner P. 2015. SNAP (sentinel application platform) and the ESA sentinel 3 toolbox. ESASP. 734:21.
  • Zuo R. 2017. Machine learning of mineralization-related geochemical anomalies: a review of potential methods. Nat Resour Res. 26(4):457–464.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.