255
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Defining fertility management units and land suitability analysis using digital soil mapping approach

, , , &
Pages 5914-5934 | Received 10 Dec 2020, Accepted 25 Apr 2021, Published online: 04 Jun 2021

References

  • Adhikari K, Minasny B, Greve MB, Greve MH. 2014. Constructing a soil class map of Denmark based on the FAO legend using digital techniques. Geoderma. 214–215:101–113.
  • Adhikari K, Owens PR, Ashworth AJ, Sauer TJ, Libohova Z, Richter JL, Miller DM. 2018. Topographic controls on soil nutrient variations in a silvopasture system. Agrosyst Geosci Environ. 1(1):1–15.
  • Akinci H, Yavuz Özalp A, Turgut B. 2013. Agricultural land use suitability analysis using GIS and AHP technique. Comput Electron Agric. 97:71–82.
  • Arrouays D, Grundy MG, Hartemink AE, Hempel JW, Heuvelink GBM, Hong SY, Lagacherie P, Lelyk G, McBratney AB, McKenzie NJ, et al. 2014. GlobalSoilMap: towards a fine-resolution global grid of soil properties. Adv Agron. 125:93–134.
  • Ballabio C, Panagos P, Monatanarella L. 2016. Mapping topsoil physical properties at European scale using the LUCAS database. Geoderma. 261:110–123.
  • Basso B, Bertocco M, Sartori L, Martin EC. 2007. Analyzing the effects of climate variability on spatial of yield in a maize-wheat-soybean rotation. Eur J Agron. 26(2):82–91.
  • Berger KC, Truog E. 1939. Boron determination in soils and plants. Ind Eng Chem Anal Ed. 11(10):540–545.
  • Bhattacharyya T, Pal DK, Deshpande SB. 1993. Genesis and transformation of minerals in the formation of red (Alfisols) and black (Inceptisols and Vertisols) soils on Deccan basalt in the Western Ghats. J Indian Soc Soil Sci. 44(1):159–171.
  • Bhattacharyya T, Pal DK, Easter M, Batjes NH, Milne E, Gajbhiye KS, Chandran P, Ray SK, Mandal C, Paustian K, et al. 2007. Modelled soil organic carbon stocks and changes in the Indo-Gangetic Plains, India from 1980 to 2030. Agric Ecosyst Environ. 122(1):84–94.
  • Bonfante A, Bouma J. 2015. The role of soil series in quantitative land evaluation when expressing effects of climate change and crop breeding on future land use. Geoderma. 259: 187–195. DOI:10.1016/j.geoderma.2015.06.010.
  • Breiman L. 2001. Random forests. Machine Learning. 45(1):5–32.
  • Congalton RG. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ. 37(1):35–46.
  • Cullum C, Rogers KH, Brierley G, Witkowski ETF. 2016. Ecological classification and mapping for landscape management and science: foundations for the description of patterns and processes. Prog Phys Geogr. 40(1):38–65.
  • Daigle JJ, Hudnall WH, Gabriel WJ, Mersiovsky E, Nielson RD. 2005. The National Soil Information System (NASIS): designing soil interpretation classes for military land-use predictions. J Terramech. 42(3–4):305–320.
  • de Carvalho Junior W, Lagacherie P, da Silva Chagas C, Calderano Filho B, Bhering SB. 2014. A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment. Geoderma. 232–234:479–486.
  • Dharumarajan S, Hegde R. 2020. Digital mapping of soil texture classes using Random Forest classification algorithm. Soil Use Manage. DOI:10.1111/sum.12668
  • Dharumarajan S, Hegde R, Singh SK. 2017. Spatial prediction of major soil properties using Random Forest techniques - a case study in semi-arid tropics of South India. Geoderma Regional. 10:154–162.
  • Dharumarajan S, Kalaiselvi B, Suputhra Lalitha M, Hegde R, Singh SK, Lagacherie P. 2020. Digital soil mapping of key GlobalSoilMap properties in Northern Karnataka Plateau. Geoderma Regional. 20. DOI:10.1016/j.geodrs.2019.e00250
  • Dharumarajan S, Vasundhara R, Suputhra A, Lalitha M, Hegde R. 2020. Prediction of soil depth in Karnataka using digital soil mapping approach. J Indian Soc Remote Sens. 48(11):1593–1600.
  • El Baroudy AA. 2016. Mapping and evaluating land suitability using a GIS-based model. Catena. 140:96–104.
  • Fridgen JJ, Kitchen NR, Sudduth KA, Drummond ST, Wiebold WJ, Fraisse CW. 2004. Management zone analyst (MZA): software for subfield management zone delineation. Agron J. 96(1):100–108.
  • Gomez C, Dharumarajan S, Féret JB, Lagacherie P, Ruiz L, Sekhar M. 2019. Use of Sentinel-2 time-series images for classification and uncertainty analysis of inherent biophysical property: case of soil texture mapping. Remote Sens. 11(5):565.
  • Günther F, Fritsch S. 2010. Neuralnet: training of neural networks. R J. 2(1):30–38.
  • Harms B, Brough D, Philip S, Bartley R, Clifford D, Thomas M, Willis R, Gregory L. 2015. Digital soil assessment for regional agricultural land evaluation. Global Food Secur. 5:25–36.
  • Hengl T, Heuvelink GBM, Stein A. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 120(1–2):75–93.
  • Hengl T, Mendes de Jesus J, Heuvelink GBM, Ruiperez Gonzalez M, Kilibarda M, Blagotić A, Shangguan W, Wright MN, Geng X, Bauer-Marschallinger B, et al. 2017. SoilGrids250m: global gridded soil information based on machine learning. PLoS One. 12(2):e0169748.
  • Heung B, Ho HC, Zhang J, Knudby A, Bulmer CE, Schmidt MG. 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 265:62–77.
  • Jackson ML. 1962. Soil chemical analysis. Englewood Cliffs, NJ: Prentice Hall.
  • Joerin F, Thériault M, Musy A. 2001. Using GIS and outranking multicriteria analysis for land-use suitability assessment. Int J Geogr Inform Sci. 15(2):153–174. DOI:10.1080/13658810051030487.
  • Kempen B, Brus DJ, Stoorvogel JJ, Heuvelink GBM, Vries FD. 2012. Efficiency comparison of conventional and digital soil mapping for updating soil maps. Soil Sci Soc Am J. 76(6):2097–2115.
  • Kidd DB, Malone BP, McBratney AB, Minasny B, Webb MA. 2014. Digital mapping of a soil drainage index for irrigated enterprise suitability in Tasmania. Soil Res. 52(2):107–119.
  • Kitchen NR, Sudduth KA, Myers DB, Drummond ST, Hong SY. 2005. Delineating productivity zones on clay pan soil fields using apparent soil electrical conductivity. Comput Electron Agric. 46(1–3):285–308.
  • Kuriakose SL, Devkota S, Rossiter DG, Jetten VG. 2009. Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India. Catena. 79(1):27–38.
  • Lacoste M, Minasny B, McBratney A, Michot D, Viaud V, Walter C. 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma. 213:296–311.
  • Lagacherie P, McBratney AB, Voltz M. 2006. Digital soil mapping: an introductory perspective. Developments in soil science. Vol. 31; p. 658. Amsterdam: Elsevier.
  • Ließ M, Glaser B, Huwe B. 2012. Making use of the World Reference Base diagnostic horizons for the systematic description of the soil continuum – application to the tropical mountain soil-landscape of southern Ecuador. Catena. 97:20–30.
  • Lindsay WL, Norvell WA. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 42(3):421–428.
  • Liu T, Juang KW, Lee DY. 2006. Interpolating soil properties using kriging combined with categorical information of soil maps. Soil Sci Soc Am J. 70(4):1200–1209.
  • Lorenzetti R, Barbetti R, Fantappiè M, L’Abate G, Costantini EAC. 2015. Comparing data mining and deterministic pedology to assess the frequency of WRB reference soil groups in the legend of small scale maps. Geoderma. 237–238:237–245.
  • Ma Y, Minasny B, Malone BP, McBratney AB. 2019. Pedology and digital soil mapping (DSM). Eur J Soil Sci. 70(2):216–235.
  • Maji AK, Obi Reddy GP, Thayalan S, Walke NJ. 2005. Characterization and classification of land forms and soils over basaltic terrain in sub-humid tropics of Central India. J Indian Soc Soil Sci. 53 (2):154–162.
  • Malone BP, Kidd DB, Minasny B, McBratney AB. 2015. Taking account of uncertainties in digital land suitability assessment. Peer J. 3:e1366.
  • Malone BP, McBratney AB, Minasny B, Laslett GM. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma. 154(1–2):138–152.
  • McBratney AB, Mendonça Santos ML, Minasny B. 2003. On digital soil mapping. Geoderma. 117(1–2):3–52.
  • Meinshausen N. 2006. Quantile regression forests. J Mach Learn Res. 7:983–999.
  • Motaghian HR, Mohammadi J. 2011. Spatial estimation of saturated hydraulic conductivity from terrain attributes using regression, kriging, and artificial neural networks. Pedosphere. 21(2):170–177.
  • Mukherjee A, Lal R. 2014. Comparison of soil quality index using three methods. PLoS One. 9(8):e105981.
  • Naidu LGK, Ramamurthy V, Challa O, Hegde R, Krishnan P. 2006. Manual for soil-site suitability criteria for major crops. Technical bulletin, 126, NBSS&LUP, Nagpur.
  • Odeh I, McBratney A, Chittleborough D. 1995. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 67(3–4):215–226.
  • Odgers NP, McBratney AB, Minasny B. 2015. Digital soil property mapping and uncertainty estimation using soil class probability rasters. Geoderma. 237–238:190–198.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular No. 939. Washington (DC): United States Department of Agriculture.
  • Ortega R, Santibáñez O. 2007. Determination of management zones in corn (Zea mays L.) based on soil fertility. Comput Electron Agric. 58(1):49–59. DOI:10.1016/j.compag.2006.12.011.
  • Pahlavan-Rad MR, Toomanian N, Khormali F, Brungard CW, Komaki CK, Bogaert P. 2014. Updating soil survey maps using random forest and conditioned latin hy-percube sampling in the loess derived soils of northern Iran. Geoderma. 232–234:97–106.
  • Patil PL, Kuligod VB, Gundlur SS, Katti J, Nagaral IN, Shikrashetti P, Geetanjali HM, Dasog GS. 2016. Soil fertility mapping in dindur sub-watershed of Karnataka for site specific recommendations. J Indian Soc Soil Sci. 64(4):381–390.
  • Piikki K, Winowiecki L, Vågen TG, Ramirez-Villegas J, Mats Söderström M. 2017. Improvement of spatial modelling of crop suitability using a new digital soil map of Tanzania. S Afr J Plant Soil. 34(4):243–254.
  • Richards LA. 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook No. 60. Washington (DC): United States Department of Agriculture.
  • Ruiperez Gonzalez M, Kempen B, Bindraban PS, Wolters S, Hicintuka C, Nibasumba M, Veerkamp J. 2015. Digital mapping of soil nutrients for the Republics of Burundi and Rwanda. In Jansen B, Keesstra SD, Mol G, Wallinga J, Zaal AM, editors. Soil Science in a Changing World. Wageningen: Wageningen University & Research; p. 179.
  • Sarmadian F, Ali K, Antonia O, Ghavamoddin Z, Hossein J. 2014. Mapping of spatial variability of soil organic carbon based on radial basis functions method. ProEnvironment. 7:3–9.
  • Shahbazi F, Hughes P, McBratney AB, Minasny B, Malone BP. 2019. Evaluating the spatial and vertical distribution of agriculturally important nutrients – nitrogen, phosphorous and boron – in North West Iran. Catena. 173:71–82.
  • Shepherd KD, Shepherd G, Walsh MG. 2015. Land health surveillance and response: a framework for evidence-informed land management. Agric Syst. 132:93–106.
  • Soil Survey Staff. 2017. Soil survey manual. USDA Handbook No. 18. Ditzler C, Scheffe K, Monger HC, editors. Washington (DC): Government Printing Office.
  • Storie R. 1978. Storie index soil rating. Special Publication No. 3203. Oakland (CA): Division of Agricultural Sciences, University of California.
  • Sys C, Van Ranst E, Debaveye J. 1991. Land evaluation, Part I. Principles in land evaluation and crop production calculations. Brussels: General Administration for Development Cooperation; p. 40–80.
  • Sys C, Van Ranst E, Debaveye J. 1993. Land evaluation. Part 3. Crop requirements. Agricultural Publications 7, 3. Brussels: General Administration of Development Cooperation of Belgium; p. 199.
  • Taghizadeh-Mehrjardi R, Minasny B, McBratney AB, Triantafilis J, Sarmadian F, Toomanian N. 2012. Digital soil mapping of soil classes using decision trees in Central Iran. In: Minasny B, Malone BP, McBratney AB, editors. Digital soil assessments and beyond. Leiden: CRC Press; p. 197–202.
  • Taghizadeh-Mehrjardi R, Nabiollahi K, Minasny B, Triantafilis J. 2015. Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma. 253–254:67–77.
  • Taghizadeh-Mehrjardi R, Schmidt K, Amirian-Chakan A, Rentschler T, Zeraatpisheh M, Sarmadian F, Valavi R, Davatgar N, Behrens T, Scholten T. 2020. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sens. 12(7):1095.
  • Tesfa TK, Tarboton DG, Chandler DG, McNamara JP. 2009. Modeling soil depth from topographic and land cover attributes. Water Resour Res. 45(10):W10438.
  • Vasu D, Srivastava R, Patil N, Tiwary P, Chandran P, Singh SK. 2018. A comparative assessment of land suitability evaluation methods for agricultural landuse planning at village level. Land Use Policy. 79:146–163.
  • Vaysse K, Lagacherie P. 2017. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma. 291:55–64.
  • Walke N, Obireddy GP, Maji A, Thayalan S. 2012. GIS-based multicriteria overlay analysis in soil-suitability evaluation for cotton (Gossypium spp.): a case study in the black soil region of Central India. Comput Geosci. 41: 108–110.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37:29–38.
  • Williams CH, Steinberg A. 1958. Sulphur and phosphorus in some eastern Australian soils. Aust J Agric Res. 9(4):483–491.
  • Yu J, Chen Y, Wu J, Khan S. 2011. Cellular automata based spatial multi-criteria land suitability simulation for irrigated agriculture. Int J Geogr Inform Sci. 25(1):131–148.
  • Zeraatpisheh M, Ayoubi S, Jafari A, Finke P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology. 285:186–204.
  • Zhang X, Zhang F, Wang D, Fan J, Hu Y, Kang H, Chang M, Pang Y, Yang Y, Feng Y. 2018. Effects of vegetation, terrain and soil layer depth on eight soil chemical properties and soil fertility based on hybrid methods at urban forest scale in a typical loess hilly region of China. PLoS One. 13(10):e0205661.
  • Zolekar RB, Bhagat VS. 2015. Multi-criteria land suitability analysis for agriculture in hilly zone: remote sensing and GIS approach. Comput Electron Agric. 118:300–321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.