352
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Integration of statistical models and ensemble machine learning algorithms (MLAs) for developing the novel hybrid groundwater potentiality models: a case study of semi-arid watershed in Saudi Arabia

, , , , , & show all
Pages 6442-6473 | Received 02 Feb 2021, Accepted 25 May 2021, Published online: 28 Jun 2021

References

  • Ahmadi H, Kaya OA, Babadagi E, Savas T, Pekkan E. 2020. GIS-based groundwater potentiality mapping using AHP and FR models in Central Antalya, Turkey. Environ Sci Proc. 5(1):11.
  • Ahmed JB, Pradhan B. 2019. Spatial assessment of termites interaction with groundwater potential conditioningparameters in Keffi, Nigeria. J Hydrol. 578:124012.
  • Ahmed N, Hoque MAA, Pradhan B, Arabameri A. 2021. Spatio-temporal assessment of groundwater potential zone in the drought-prone area of Bangladesh using GIS-based bivariate models. Nat Resour Res. 1–23.
  • Al-Abadi AM. 2018. Mapping flood susceptibility in an arid region of southern Iraq using ensemble machine learning classifiers: a comparative study. Arab J Geosci. 11(9):218.
  • Al-Abadi AM, Al-Temmeme AA, Al-Ghanimy MA. 2016. A GIS-based combining of frequency ratio and index of entropy approaches for mapping groundwater availability zones at Badra–Al Al-Gharbi–Teeb areas, Iraq. Sustain Water Resour Manag. 2:265–283.
  • Al-Fugara AK, Ahmadlou M, Al-Shabeeb AR, AlAyyash S, Al-Amoush H, Al-Adamat R. 2020. Spatial mapping of groundwater springs potentiality using grid search-based and genetic algorithm-based support vector regression. Geocarto Int. 1–20.
  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorbani MA. 2020. GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecol Indic. 117:106620.
  • Allafta H, Opp C, Patra S. 2020. Identification of groundwater potential zones using remote sensing and GIS techniques: a case study of the Shatt Al-Arab Basin. Remote Sens. 13(1):112.
  • Alsubih M, Mallick J, Talukdar S, Salam R, AlQadhi S, Fattah MA, Thanh NV. 2021. An investigation of the short-term meteorological drought variability over Asir Region of Saudi Arabia. Theor Appl Climatol. 1–21.
  • Arunbose S, Srinivas Y, Rajkumar S, Nair NC, Kaliraj S. 2021. Remote sensing, GIS and AHP techniques based investigation of groundwater potential zones in the Karumeniyar River Basin, Tamil Nadu, Southern India. Groundwater Sustain Dev. 14:100586.
  • Arya S, Subramani T, Karunanidhi D. 2020. Delineation of groundwater potential zones and recommendation of artificial recharge structures for augmentation of groundwater resources in Vattamalaikarai Basin. Environ Earth Sci. 79(5):102.
  • Avand M, Janizadeh S, Tien Bui D, Pham VH, Ngo PTT, Nhu VH. 2020. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. Int J Digital Earth. 13(12):1408–1429.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1–2):15–31.
  • Banerjee P, Singh VS, Chatttopadhyay K, Chandra PC, Singh B. 2011. Artificial neural network model as a potential alternative for groundwater salinity forecasting. J Hydrol. 398(3-4):212–220.
  • Berhanu KG, Hatiye SD. 2020. Identification of groundwater potential zones using proxy data: case study of Megech watershed, Ethiopia. J Hydrol Reg Stud. 28:100676.
  • Bonham-Carter GF. 1991. Integration of geoscientific data using GIS. Geogr Inf Syst. 2: 171–184.
  • Bonham-Carter GF. 1994. Geographic information systems for geoscientists: modeling with GIS. In: Bonham-Carter F, editor. Computer methods in the geosciences. Oxford (UK): Pergamon; 398 pp.
  • Bonham-Carter GF, Agterberg FP, Wright DF. 1989. Weights of evidence modelling: a new approach to mapping mineral potential. Statistical Application in the Earth Sciences, Agterberg FP, Bonham-Carter GF, editors. Geological Survey of Canada. 89(9):171–183.
  • Bou Kheir R, Greve MH, Abdallah C, Dalgaard T. 2010. Spatial soil zinc content distribution from terrain parameters: a GIS-based decision-tree model in Lebanon. Environ Pollut. 158(2):520–528.
  • Boughariou E, Allouche N, Brahim FB, Nasri G, Bouri S. 2021. Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environ Dev Sustain. 1–26.
  • Breiman L. 2001. Random forests. Mach Learn. 45:5–32.
  • Bui DT, Shirzadi A, Shahabi H, Chapi K, Omidavr E, Pham BT, Asl DT, Khaledian H, Pradhan B, Panahi M, et al. 2019. A novel ensemble artificial intelligence approach for gully erosion mapping in a semi-arid watershed (Iran). Sensors. 19(11):2444.
  • Bui DT, Tsangaratos P, Ngo PTT, Pham TD, Pham BT. 2019. Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods. Sci Total Environ. 668:1038–1054.
  • Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT. 2020. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188:104426.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378.
  • Carter MR. 2008. In: Carter MR, Gregorich EG, editors. Soil sampling and methods of analysis. 2nd ed. Boca Raton (FL): CRC Press; p. 1224.
  • Chen W, Chen X, Peng J, Panahi M, Lee S. 2021. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front. 12(1):93–107.
  • Chen W, Hong H, Li S, Shahabi H, Wang Y, Wang X, Ahmad BB. 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. J Hydrol. 575:864–873.
  • Chen W, Lei X, Chakrabortty R, Pal SC, Sahana M, Janizadeh S. 2021. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. J Environ Manage. 284:112015.
  • Chen W, Li H, Hou E, Wang S, Wang G, Panahi M, Li T, Peng T, Guo C, Niu C, et al. 2018. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci Total Environ. 634:853–867.
  • Chen W, Li Y. 2020. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena. 195:104777.
  • Chen W, Li Y, Tsangaratos P, Shahabi H, Ilia I, Xue W, Bian H. 2020. Groundwater spring potential mapping using artificial intelligence approach based on kernel logistic regression, random forest, and alternating decision tree models. Appl Sci. 10(2):425.
  • Chen W, Li Y, Xue W, Shahabi H, Li S, Hong H, Wang X, Bian H, Zhang S, Pradhan B, et al. 2020. Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods. Sci Total Environ. 701:134979.
  • Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F, Parvinnezhad D. 2019. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol. 572:435–448.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li S, Jaafari A, Ahmad BB. 2019. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. Catena. 172:212–231.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu AX, Pei X, Duan Z. 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135.
  • Chen W, Pradhan B, Li S, Shahabi H, Rizeei HM, Hou E, Wang S. 2019. Novel hybrid integration approach of bagging-based Fisher’s linear discriminant function for groundwater potential analysis. Nat Resour Res. 28(4):1239–1258.
  • Chen W, Shahabi H, Shirzadi A, Hong H, Akgun A, Tian Y, Liu J, Zhu AX, Li S. 2019. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull Eng Geol Environ. 78(6):4397–4419.
  • Chen W, Shahabi H, Shirzadi A, Li T, Guo C, Hong H, Li W, Pan D, Hui J, Ma M, et al. 2018. A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto Int. 33(12):1398–1420.
  • Chen W, Shirzadi A, Shahabi H, Bin AB, Zhang S, Hong H, Zhang N. 2017. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics Nat Hazards Risk. 8(2):1955–1977.
  • Chen Y, Chen W, Janizadeh S, Bhunia GS, Bera A, Pham QB, Linh NTT, Balogun AL, Wang X. 2021. Deep learning and boosting framework for piping erosion susceptibility modeling: spatial evaluation of agricultural areas in the semi-arid region. Geocarto Int. 1–27.
  • Chen W, Zhao X, Shahabi H, Shirzadi A, Khosravi K, Chai H, Zhang S, Zhang L, Ma J, Chen Y, Wang X. 2019f. Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto International. 34(11):1177–1201.
  • Chowdhury A, Jha MK, Chowdary VM, Mal BC. 2008. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. Int J Remote Sens. 30(1):231–250.
  • Corsini A, Cervi F, Ronchetti F. 2009. Weight of evidence and artificial neural networks for potential groundwater spring mapping: an application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology. 111(1-2):79–87.
  • Cutler DR, Edwards TC, Beard KH, Cutler A, Hess KT, Gibson J, Lawler JJ. 2007. Random forests for classification in ecology. Ecology. 88(11):2783–2792.
  • Dar T, Rai N, Bhat A. 2020. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol Ecol Landscapes. 1–16.
  • Das N, Sutradhar S, Ghosh R, Mondal P. 2021. Applicability of geospatial technology, weight of evidence, and multilayer perceptron methods for groundwater management: a geoscientific study on Birbhum District, West Bengal, India. In: Shit PK, Bhunia GS, Adhikary PP, Jyotiprava Dash C, editors. Groundwater and society: applications of geospatial technology. Switzerland AG: Springer; p. 473–499.
  • Derrac J, García S, Molina D, Herrera F. 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput. 1(1):3–18.
  • Farid DM, Zhang L, Rahman CM, Hossain MA, Strachan R. 2014. Hybrid decision tree and naïve Bayes classifiers for multi-class classification tasks. Expert Syst Appl. 41(4):1937–1946.
  • Food and Agriculture Organization of the United Nations. 2012. AQUASTAT-FAO’S Report 2012: Aral Sea Basin; Water Report. Rome (Italy): FAO.
  • Golkarian A, Naghibi SA, Kalantar B, Pradhan B. 2018. Groundwater potential mapping using C5. 0, random forest, and multivariate adaptive regression spline models in GIS. Environ Monit Assess. 190(3):1–16.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena. 163:399–413.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Chen W. 2018. Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Sci Total Environ. 625:575–588.
  • Huang X, Gao L, Crosbie RS, Zhang N, Fu G, Doble R. 2019. Groundwater recharge prediction using linear regression, multi-layer perception network, and deep learning. Water. 11(9):1879.
  • Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Kuriqi A, Linh NTT. 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front. 12(3):101075.
  • Islam ARMT, Talukdar S, Mahato S, Ziaul S, Eibek KU, Akhter S, Pham QB, Mohammadi B, Karimi F, Linh NTT. 2021. Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh. Environ Sci Pollut Res. 1–22.
  • Jaafarzadeh MS, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, Rouhani H. 2021. Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Sci Rep. 11:5587.
  • Jury WA, Vaux HJ. 2007. The emerging global water crisis: managing scarcity and conflict between water users. Adv Agron. 95:1–76.
  • Kargar K, Samadianfard S, Parsa J, Nabipour N, Shamshirband S, Mosavi A, Wing CK. 2020. Estimating longitudinal dispersion coefficient in natural streams using empirical models and machine learning algorithms. Eng Appl Comput Fluid Mech. 14(1):311–322.
  • Khosravi K, Cooper JR, Daggupati P, Thai Pham B, Tien Bui D. 2020. Bedload transport rate prediction: application of novel hybrid data mining techniques. J Hydrol. 585:124774.
  • Khosravi K, Panahi M, Tien Bui D. 2018. Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol Earth Syst Sci. 22(9):4771–4792.
  • Kordestani MD, Naghibi SA, Hashemi H, Ahmadi K, Kalantar B, Pradhan B. 2019. Groundwater potential mapping using a novel data-mining ensemble model. Hydrogeol J. 27(1):211–224.
  • Koyuncu H, Ceylan R. 2013, July. Artificial neural network based on rotation forest for biomedical pattern classification. In 2013 36th International conference on telecommunications and signal processing (T SP) (pp. 581–585). IEEE.
  • Landwehr N, Hall M, Frank E. 2005. Logistic model trees. Mach Learn. 59(1-2):161–205.
  • Lee S, Hong SM, Jung HS. 2018. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: the case of Boryeong city in Korea. Geocarto Int. 33(8):847–861.
  • Lee S, Kim YS, Oh HJ. 2012. Application of a weights-of-evidence method and GIS to regional groundwater productivity potential mapping. J Environ Manage. 96(1):91–105.
  • Li P, Qian H, Wu J. 2014. Accelerate research on land creation. Nature. 510:29–31.
  • Lin M, Biswas A, Bennett EM. 2019. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. J Environ Manage. 235:84–95.
  • Mahala A. 2021. Delineating the status of groundwater in a plateau fringe region using multi-influencing factor (MIF) and GIS: a study of Bankura District, West Bengal, India. In: Adhikary PP, Shit PK, Santra P, Bhunia GS, editors. Geostatistics and geospatial technologies for groundwater resources in India. Switzerland AG: Springer; p. 215–237.
  • Mahato S, Pal S, Talukdar S, Saha TK, Mandal P. 2021. Field based index of flood vulnerability (IFV): a new validation technique for flood susceptible models. Geosci Front. 12(5):101175.
  • Mallick J. 2016. Geospatial-based soil variability and hydrological zones of Abha semi-arid mountainous watershed, Saudi Arabia. Arab J Geosci. 9(4):281.
  • Mallick J, Ahmed M, Alqadhi SD, Falqi II, Parayangat M, Singh CK, Rahman A, Ijyas T. 2020. Spatial stochastic model for predicting soil organic matter using remote sensing data. Geocarto International 1–32.
  • Mallick J, Alqadhi S, Talukdar S, Alsubih M, Ahmed M, Khan RA, Kahla N, Ben, Abutayeh SM. 2021. Risk assessment of resources exposed to rainfall induced landslide with the development of GIS and RS based ensemble metaheuristic machine learning algorithms. Sustainability. 13(2):457.
  • Mallick J, Khan RA, Ahmed M, Alqadhi SD, Alsubih M, Falqi I, Hasan MA. 2019. Modeling groundwater potential zone in a semi-arid region of aseer using fuzzy-ahp and geoinformation techniques. Water. 11(12):2656.
  • Mallick J, Singh CK, Al-Wadi H, Ahmed M, Rahman A, Shashtri S, Mukherjee S. 2015. Geospatial and geostatistical approach for groundwater potential zone delineation. Hydrol Process. 29(3):395–418.
  • Mallick J, Singh CK, AlMesfer MK, Kumar A, Khan RA, Islam S, Rahman A. 2018. Hydro-geochemical assessment of groundwater quality in Aseer Region, Saudi Arabia. Water. 10(12):1847.
  • Mallick J, Talukdar S, Alsubih M, Ahmed M, Islam ARMT, Shahfahad, Thank NV. 2021. Proposing receiver operating characteristic-based sensitivity analysis with introducing swarm optimized ensemble learning algorithms for groundwater potentiality modelling in Asir region, Saudi Arabia. Geocarto Int. 1–28.
  • Mallick J, Talukdar S, Alsubih M, Salam R, Ahmed M, Kahla N, Ben, Shamimuzzaman M. 2021. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor Appl Climatol. 143(1-2):823–841.
  • Mallick SK, Rudra S. 2021. Analysis of groundwater potentiality zones of Siliguri urban agglomeration using GIS-based Fuzzy-AHP approach. In: Shit PK, Bhunia GS, Adhikary PP, Jyotiprava Dash C, editors. Groundwater and society: applications of geospatial technology. Switzerland AG: Springer; p. 141–160.
  • Manap MA, Nampak H, Pradhan B, Lee S, Sulaiman WNA, Ramli MF. 2014. Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arab J Geosci. 7(2):711–724.
  • Milan SG, Roozbahani A, Azar NA, Javadi S. 2021. Development of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. J Hydrol. 598:126258.
  • Miraki S, Zanganeh SH, Chapi K, Singh VP, Shirzadi A, Shahabi H, Pham BT. 2019. Mapping groundwater potential using a novel hybrid intelligence approach. Water Resour Manage. 33(1):281–302.
  • Mondal S, Mandal S. 2020. Data-driven evidential belief function (EBF) model in exploring landslide susceptibility zones for the Darjeeling Himalaya, India. Geocarto Int. 35(8):818–856.
  • Mosavi A, Hosseini FS, Choubin B, Goodarzi M, Dineva A, Sardooi ER. 2021. Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour Manage. 35(1):23–37.
  • Mousavi SM, Golkarian A, Naghibi SA, Kalantar B, Pradhan B. 2017. GIS-based groundwater spring potential mapping using data mining boosted regression tree and probabilistic frequency ratio models in Iran. Aims Geosci. 3(1):91–115.
  • Mukherjee I, Singh UK. 2020. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. Catena. 194:104681.
  • Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD. 2004. An introduction to decision tree modeling. J Chemom. 18(6):272–285.
  • Nag SK, Chowdhury P, Das S, Mukherjee A. 2021. Deciphering prospective groundwater zones in Bankura district, West Bengal: a study using GIS platform and MIF techniques. Int J Energy Water Resour. 1–19.
  • Naghibi SA, Dolatkordestani M, Rezaei A, Amouzegari P, Heravi MT, Kalantar B, Pradhan B. 2019. Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential. Environ Monit Assess. 191(4):248.
  • Naghibi SA, Moghaddam DD, Kalantar B, Pradhan B, Kisi O. 2017. A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J Hydrol. 548:471–483.
  • Naghibi SA, Pourghasemi HR. 2015. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manag. 29:5217–5236.
  • Nguyen PT, Ha DH, Avand M, Jaafari A, Nguyen HD, Al-Ansari N, Van Phong T, Sharma R, Kumar R, Le HV, et al. 2020. Soft computing ensemble models based on logistic regression for groundwater potential mapping. Appl Sci. 10(7):2469.
  • Nguyen PT, Ha DH, Jaafari A, Nguyen HD, Van Phong T, Al-Ansari N, Prakash I, Van Le H, Pham BT. 2020. Groundwater potential mapping combining artificial neural network and real adaboost ensemble technique: the daknong province case-study, Vietnam. IJERPH. 17(7):2473.
  • Nguyen PT, Ha DH, Nguyen HD, Phong TV, Trinh PT, Al-Ansari N, Van LH, Pham BT, Ho LS, Prakash I. 2020. Improvement of credal decision trees using ensemble frameworks for groundwater potential modeling. Sustainability. 12(7):2622.
  • Naghibi SA, Pourghasemi HR, Dixon B. 2016. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental monitoring and assessment. 188(1):1–27.
  • Nhu VH, Rahmati O, Falah F, Shojaei S, Al-Ansari N, Shahabi H, Shirzadi A, Górski K, Nguyen H, Ahmad BB. 2020. Mapping of groundwater spring potential in karst aquifer system using novel ensemble bivariate and multivariate models. Water. 12(4):985.
  • Nogueira G, Stigter TY, Zhou Y, Mussa F, Juizo D. 2019. Understanding groundwater salinization mechanisms to secure freshwater resources in the water-scarce city of Maputo, Mozambique. Sci Total Environ. 661:723–736.
  • Obeidavi S, Gandomkar M, Akbarizadeh G, Delfan H. 2021. Evaluation of groundwater potential using Dempster-Shafer model and sensitivity analysis of effective factors: a case study of north Khuzestan province. Remote Sens Appl: Soc Environ. 22:100475.
  • Okello C, Tomasello B, Greggio N, Wambiji N, Antonellini M. 2015. Impact of population growth and climate change on the freshwater resources of Lamu Island, Kenya. Water. 7(12):1264–1290.
  • Pal S, Singha P, Lepcha K, Debanshi S, Talukdar S, Saha TK. 2021. Proposing multicriteria decision based valuation of ecosystem services for fragmented landscape in mountainous environment. Remote Sensing Applications: Society and Environment. 21:100454.
  • Pal S, Kundu S, Mahato S. 2020. Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh. J Clean Prod. 257:120311.
  • Pal S, Talukdar S. 2019. Impact of missing flow on active inundation areas and transformation of parafluvial wetlands in Punarbhaba–Tangon river basin of Indo-Bangladesh. Geocarto International. 34(10):1055–1074.
  • Pal S, Talukdar S. 2020. Modelling seasonal flow regime and environmental flow in Punarbhaba river of India and Bangladesh. J Cleaner Prod. 252:119724.
  • Park S, Hamm SY, Jeon HT, Kim J. 2017. Evaluation of logistic regression and multivariate adaptive regression spline models for groundwater potential mapping using R and GIS. Sustainability. 9(7):1157.
  • Pradhan B, Lee S. 2010. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences. 60(5):1037–1054.
  • Praveen B, Talukdar S, Mahato S, Mondal J, Sharma P, Islam ARMT, Rahman A. 2020. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep. 10(1):1–21.
  • Quinlan JR. 1986. Induction of decision trees. Mach Learn. 1:81–106.
  • Quinlan JR. 1992. Learning with continuous classes. In: Australian Joint Conference on Artificial Intelligence, Hobart, Australia.
  • Quinlan JR. 1993. C4.5: programs for machine learning. San Mateo (CA): Morgan Kaufmann.
  • Rahmati O, Nazari Samani A, Mahdavi M, Pourghasemi HR, Zeinivand H. 2015. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab J Geosci. 8(9):7059–7071.
  • Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inform. 8(4):867–883.
  • Razavi-Termeh SV, Sadeghi-Niaraki A, Choi SM. 2020. Gully erosion susceptibility mapping using artificial intelligence and statistical models. Geomatics Nat Hazards Risk. 11(1):821–844.
  • Rice ME, Harris GT. 2005. Comparing effect sizes in follow-up studies: ROC area, Cohen’s d, and r. Law Hum Behav. 29(5):615–620.
  • Rodríguez JJ, Kuncheva LI, Alonso CJ. 2006. Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell. 28(10):1619–1630.
  • Saroli M, Granata F, De Marinis G, Gargano R. 2018. Machine learning models for spring discharge forecasting. Geofluids. 2018:1–13.
  • Singha P, Das P, Talukdar S, Pal S. 2020. Modeling livelihood vulnerability in erosion and flooding induced River Island in Ganges riparian corridor, India. Ecol Indic. 119:106825.
  • Somers LD, McKenzie JM. 2020. A review of groundwater in high mountain environments. WIREs Water. 7(6):e1475.
  • Srinivasan V, Seto KC, Emerson R, Gorelick SM. 2013. The impact of urbanization on water vulnerability: a coupled human-environment system approach for Chennai, India. Glob Environ Chang. 23(1):229–239.
  • Sutradhar S, Mondal P, Das N. 2021. Delineation of groundwater potential zones using MIF and AHP models: a micro-level study on Suri Sadar Sub-Division, Birbhum District, West Bengal, India. Groundwater Sustain Dev. 12:100547.
  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S. 2016. Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci. 9:79.
  • Talukdar S, Eibek KU, Akhter S, Ziaul S, Islam ARMT, Mallick J. 2021. Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecol Indic. 126:107612.
  • Talukdar S, Ghose B, Shahfahad Salam R, Mahato S, Pham QB, Linh NTT, Costache R, Avand M. 2020. Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stoch Environ Res Risk Assess. 34:2277–2300.
  • Talukdar S, Mankotia S, Shamimuzzaman M, Mahato S. 2021. Wetland‐inundated area modeling and monitoring using supervised and machine learning classifiers. In: Pandey PC, Sharma LK, editors. Advances in remote sensing for natural resource monitoring. United States: Wiley-Blackwell; p. 346–365.
  • Talukdar S, Pal S. 2020. Wetland habitat vulnerability of lower Punarbhaba river basin of the uplifted Barind region of Indo-Bangladesh. Geocarto Int. 35(8):857–886.
  • Talukdar S, Pal S, Chakraborty A, Mahato S. 2020. Damming effects on trophic and habitat state of riparian wetlands and their spatial relationship. Ecol Indic. 118:106757.
  • Talukdar S, Pal S, Singha P. 2021. Proposing artificial intelligence based livelihood vulnerability index in river islands. J Cleaner Prod. 284:124707.
  • Talukdar S, Salam R, Samad A, Rihan M, Rahman A. 2021. Improving wetland mapping techniques using the integration of image fusion techniques and artificial neural network (ANN). In: Shit PK, Das P, Bhunia GS, Dutta D, editors. Mapping, monitoring, and modeling land and water resources. United States: CRC Press; p. 149–164.
  • Tang Y, Feng F, Guo Z, Feng W, Li Z, Wang J, Sun Q, Ma H, Li Y. 2020. Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: a comparative study from the loess plateau area in Shanxi (China). J Clean Prod. 277:124159.
  • Tolche AD. 2021. Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol Ecol Landscapes. 5(1):65–80.
  • Tran DA, Tsujimura M, Kambuku D, Dang TD. 2020. Hydrogeochemical characteristics of a multi-layered coastal aquifer system in the Mekong Delta, Vietnam. Environmental geochemistry and health. 42(2):661–680.
  • Tu JV. 1996. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology. 49(11):1225–1231.
  • [USGS] United States Geological Survey. 2017. GLOVIS. (accessed 2017 November 1). https://glovis.usgs.gov/app?fullscreen=1.
  • Wakode HB, Baier K, Jha R, Azzam R. 2018. Impact of urbanization on groundwater recharge and urban water balance for the city of Hyderabad, India. Int Soil Water Conserv Res. 6(1):51–62.
  • Wang Y, Feng L, Li S, Ren F, Du Q. 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188:104425.
  • Wu X, Kumar V, Ross QJ, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, et al. 2008. Top 10 algorithms in data mining. Knowl Inf Syst. 14(1):1–37.
  • Yariyan P, Janizadeh S, Van Phong T, Nguyen HD, Costache R, Van Le H, Pham BT, Pradhan B, Tiefenbacher JP. 2020. Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping. Water Resour Manag. 34:3037–3053.
  • Yousefi S, Sadhasivam N, Pourghasemi HR, Nazarlou HG, Golkar F, Tavangar S, Santosh M. 2020. Groundwater spring potential assessment using new ensemble data mining techniques. Measurement. 157:107652.
  • Youssef AM, Pourghasemi HR. 2021. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci Front. 12(2):639–655.
  • Zandi J, Ghazvinei PT, Hashim R, Yusof KBW, Ariffin J, Motamedi S. 2016. Mapping of regional potential groundwater springs using logistic regression statistical method. Water Resour. 43(1):48–57.
  • Zhao X, Chen W. 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sens. 12(14):2180.Zhao

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.