665
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Remote sensing and GIS for urbanization and flood risk assessment in Phnom Penh, Cambodia

, , & ORCID Icon
Pages 6625-6642 | Received 14 Feb 2021, Accepted 02 Jun 2021, Published online: 07 Jul 2021

References

  • Adams JB, Smith MO, Johnson PE. 1986. Correction [to “Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site” by John B. Adams, Milton O. Smith, and Paul E. Johnson]. J Geophys Res. 91(B10):10513.
  • Arel I, Rose DC, Karnowski TP. 2010. Deep machine learning - A new frontier in artificial intelligence research [Research Frontier]. IEEE Comput Intell Mag. 5(4):13–18.
  • Baky MAA, Islam M, Paul S. 2020. Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Syst Environ. 4(1):225–244.
  • Bateson A, Curtiss B. 1996. A method for manual endmember selection and spectral unmixing. Remote Sens Environ. 55(3):229–243.
  • Ben F, Matt F. 2015. Urbanising disaster risks: vulnerability of the urban poor in Cambodia to flooding and other hazards. Bangkok, Thailand.
  • Boser BE, Guyon I, Vapnik V. 1992. A training algorithm for optimal margin classiers. Proceedings of the Fifth Annual Workshop on Computational Learning Theory; ACM Press.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Breiman L, Friedman J, Olshen R, Stone C. 1984. Classification and regression trees. New York: Hall.
  • Campos-Taberner M, García-Haro FJ, Martínez B, Izquierdo-Verdiguier E, Atzberger C, Camps-Valls G, Gilabert MA. 2020. Understanding deep learning in land use classification based on Sentinel-2 time series. Sci Rep. 10(1):17188.
  • Camps-Valls G, Bruzzone L. 2005. Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens. 43(6):1351–1362.
  • Chen A, Giese M, Chen D. 2020. Flood impact on Mainland Southeast Asia between 1985 and 2018—The role of tropical cyclones. J Flood Risk Management. 13(2):e12598.
  • Cortes C, Vapnik V. 1995. Support-vector networks. Mach Learn. 20(3):273–297.
  • CRED. 2019. EM‐DAT: The International Disaster Database. Centre for Research on the Epidemiology of Disasters.
  • Das S. 2018. Geographic information system and AHP-based flood hazard zonation of Vaitarna basin, Maharashtra, India. Arab J Geosci. 11(19):576.
  • Davies A, Ghahramani Z. 2014. The random forest kernel and other kernels for big data from random partitions. CoRR abs/1402.4293.
  • Dixit A, Agarwal S. 2021. Non-linear spectral unmixing of hyperspectral data using Modified PPNMM. Appl Comput Geosci. 9:100053.
  • Doyle S. 2012. City of water: Architecture, urbanism and the floods of Phnom Penh. J Environ Des Plan. 12:135–154.
  • Drucker H, Kaufman L, Smola A, Vapnik V. 2003. Support vector regression machines. Adv Neural Inf Process Syst. 9:155–161.
  • Dutta D, Rahman A, Paul SK, Kundu A. 2021. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Clim. 37:100799.
  • Eccles R, Zhang H, Hamilton D. 2019. A review of the effects of climate change on riverine flooding in subtropical and tropical regions. J Water Clim Change. 10(4):687–707.
  • Eches O, Dobigeon N, Mailhes C, Tourneret J. 2010. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery. IEEE Trans Image Process. 19(6):1403–1413.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recog Lett. 27(8):861–874.
  • Feng M, Sexton JO, Huang C, Masek JG, Vermote EF, Gao F, Narasimhan R, Channan S, Wolfe RE, Townshend JR. 2013. Global surface reflectance products from Landsat: Assessment using coincident MODIS observations. Remote Sens Environ. 134:276–293.
  • Ferreira ME, Ferreira LG, Sano EE, Shimabukuro YE. 2007. Spectral linear mixture modelling approaches for land cover mapping of tropical savanna areas in Brazil. Int J Remote Sens. 28(2):413–429.
  • Guo AJX, Zhu F. 2021. Improving deep hyperspectral image classification performance with spectral unmixing. Signal Process. 183:107949.
  • Hamidi O, Tapak L, Abbasi H, Maryanaji Z. 2018. Application of random forest time series, support vector regression and multivariate adaptive regression splines models in prediction of snowfall (a case study of Alvand in the middle Zagros, Iran). Theor Appl Climatol. 134(3–4):769–776.
  • Harris RMB, Loeffler F, Rumm A, Fischer C, Horchler P, Scholz M, Foeckler F, Henle K. 2020. Biological responses to extreme weather events are detectable but difficult to formally attribute to anthropogenic climate change. Sci Rep. 10(1):14067.
  • Heinz DC, Chein IC. 2001. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans Geosci Remote Sens. 39:529–545.
  • Hirabayashi Y, Mahendran R, Koirala S, Konoshima L, Yamazaki D, Watanabe S, Kim H, Kanae S. 2013. Global flood risk under climate change. Nat Clim Chang. 3(9):816–821.
  • Hoa LTV, Haruyama S, Nhan NH, Cong TT, Long BD. 2007. The historical flood in 2000 in Mekong River Delta, Vietnam: A quantitative analysis and simulation. Geogr Rev Jpn, Chirigaku Hyoron. 80(12):663–680.
  • Ishwaran H. 2007. Variable importance in binary regression trees and forests. Electron J Stat. 1:519–537.
  • Johnson RW, Tothill JC. 1985. Definition and broad geographic outline of savanna lands. In: Tothill JC, Mott JJ, editor. Ecology and management of the world’s savannas. Canberra: Australlian Academia of Science.
  • Karsten S, Ronny H, Uwe S. 2018. Machine learning methods for remote sensing applications: an overview. Proceedings of the ProcSPIE.
  • Keshava N, Mustard JF. 2002. Spectral unmixing. IEEE Signal Process Mag. 19(1):44–57.
  • Keum HJ, Han KY, Kim HI. 2020. Real-time flood disaster prediction system by applying machine learning technique. KSCE J Civ Eng. 24(9):2835–2848.
  • Khosravi K, Melesse AM, Shahabi H, Shirzadi A, Chapi K, Hong H. 2019. Chapter 33 - Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques. In: Melesse A, Abtew W, Senay G, editors. Extreme hydrology and climate variability. Amsterdam: Elsevier; p. 419–434.
  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR. 2016. A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards. 83(2):947–987.
  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, et al. 2014. Flood risk and climate change: global and regional perspectives. Hydrol Sci J. 59(1):1–28.
  • Lary DJ, Alavi AH, Gandomi AH, Walker AL. 2016. Machine learning in geosciences and remote sensing. Geosci Front. 7(1):3–10.
  • Lee S, Lathrop RG. 2005. Sub-pixel estimation of urban land cover components with linear mixture model analysis and Landsat Thematic Mapper imagery. Int J Remote Sens. 26(22):4885–4905.
  • Lee S, Song K-Y, Oh H-J, Choi J. 2012. Detection of landslides using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis. Int J Remote Sens. 33(16):4937–4966.
  • Li W. 2020. Mapping urban impervious surfaces by using spectral mixture analysis and spectral indices. Remote Sensing. 12(1):94.
  • Lin W, Wu Z, Lin L, Wen A, Li J. 2017. An ensemble random forest algorithm for insurance big data analysis. IEEE Access. 5:16568–16575.
  • Lorena AC, Jacintho LFO, Siqueira MF, Giovanni RD, Lohmann LG, de Carvalho A, Yamamoto M. 2011. Comparing machine learning classifiers in potential distribution modelling. Expert Syst Appl. 38(5):5268–5275.
  • Magezi DA. 2015. Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui). Front Psychol. 6:2.
  • Marconi M, Gatto B, Magni M, Marincioni F. 2016. A rapid method for flood susceptibility mapping in two districts of Phatthalung Province (Thailand): present and projected conditions for 2050. Nat Hazards. 81(1):329–346.
  • Maxwell AE, Warner TA, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. Int J Remote Sens. 39(9):2784–2817.
  • McDonald RI, Green P, Balk D, Fekete BM, Revenga C, Todd M, Montgomery M. 2011. Urban growth, climate change, and freshwater availability. Proc Natl Acad Sci USA. 108(15):6312–6317.
  • Meg F, Tnaut ST. 2014. The Phnom Penh survey: A study on urban poor settlements in Phnom Penh. Phnom Penh, Cambodia.
  • Mi C, Huettmann F, Guo Y, Han X, Wen L. 2017. Why choose random forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. PeerJ. 5:e2849.
  • Mind'je R, Li L, Amanambu AC, Nahayo L, Nsengiyumva JB, Gasirabo A, Mindje M. 2019. Flood susceptibility modeling and hazard perception in Rwanda. Int J Disaster Risk Reduct. 38:101211.
  • MLMUPC. 2016. Land use master plan of Phnom Penh city 2035. Phnom Penh, Cambodia.
  • Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: A review. ISPRS J Photogramm Remote Sens. 66(3):247–259.
  • Muis S, Güneralp B, Jongman B, Aerts JCJH, Ward PJ. 2015. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data. Sci Total Environ.:445–457.
  • NCSD, GGGI, ICEM. 2018. Sustainable City Plan for Phnom Penh 2018-2030. Phnom Penh, Cambodia.
  • NIS. 2019. General population census of the Kingdom of Cambodia. Phnom Penh, Cambodia.
  • Norman LM, Huth H, Levick L, Shea Burns I, Phillip Guertin D, Lara-Valencia F, Semmens D. 2010. Flood hazard awareness and hydrologic modelling at Ambos Nogales, United States–Mexico border. J Flood Risk Manag. 3(2):151–165.
  • Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC. 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For Ecol Manage. 275:117–129.
  • Orttung RW. 2019. Capital cities and urban sustainability. London, UK: Taylor & Francis
  • Paprotny D, Sebastian A, Morales-Nápoles O, Jonkman SN. 2018. Trends in flood losses in Europe over the past 150 years. Nat Commun. 9(1):1985.
  • Plaza A, Martín G, Plaza J, Zortea M, Sánchez S. 2011. Recent Developments in endmember extraction and spectral unmixing. In: Prasad S, Bruce LM, Chanussot Y, editors. Optical remote sensing: advances in signal processing and exploitation techniques. Berlin, Heidelberg: Springer; p. 235–267.
  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM. 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards. 69(1):749–779.
  • Powell RL, Roberts DA, Dennison PE, Hess LL. 2007. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil. Remote Sens Environ. 106(2):253–267.
  • Rahmati O, Zeinivand H, Besharat M. 2016. Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis. Geomatics Nat Hazards Risk. 7(3):1000–1017.
  • Rodriguez-Galiano VF, Chica-Olmo M, Abarca-Hernandez F, Atkinson PM, Jeganathan C. 2012. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens Environ. 121:93–107.
  • Roy DP, Wulder MA, Loveland TR, C.E W, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens Environ. 145:154–172.
  • Sadeh M, Brauer M, Dankner R, Fulman N, Chudnovsky A. 2021. Remote sensing metrics to assess exposure to residential greenness in epidemiological studies: A population case study from the Eastern Mediterranean. Environ Int. 146:106270.
  • Sar N, Chatterjee S, Das Adhikari M. 2015. Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Model Earth Syst Environ. 1(4):31.
  • Scheunders P, Tuia D, Moser G. 2018. 2.10 - Contributions of machine learning to remote sensing data analysis. In: Liang S, editor. Comprehensive remote sensing. Oxford: Elsevier; p. 199–243.
  • Shehata M, Mizunaga H. 2018. Flash flood risk assessment for Kyushu Island. Environ Earth Sci. 77(3):76.
  • Shiferaw H, Bewket W, Eckert S. 2019. Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem. Ecol Evol. 9(5):2562–2574.
  • Small C. 2001. Estimation of urban vegetation abundance by spectral mixture analysis. Int J Remote Sens. 22(7):1305–1334.
  • Small C, Lu JWT. 2006. Estimation and vicarious validation of urban vegetation abundance by spectral mixture analysis. Remote Sens Environ. 100(4):441–456.
  • Smith MO, Johnson PE, Adams JB. 1985. Quantitative determination of mineral types and abundances from reflectance spectra using principal components analysis. J Geophys Res. 90(S02):C797.
  • Statnikov A, Aliferis CF. 2007. Are random forests better than support vector machines for microarray-based cancer classification? AMIA Annu Symp Proc. 2007:686–690.
  • Tay S, Tijaja JP, Secretariat A. 2017. Global megatrends: Implications for the ASEAN economic community: ASEAN Secretariat. Jakarta, Indonesia.
  • Tehrany MS, Pradhan B, Jebur MN. 2013. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. J Hydrol. 504:69–79.
  • Tehrany MS, Pradhan B, Mansor S, Ahmad N. 2015. Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA. 125:91–101.
  • Theseira MA, Thomas G, Taylor JC, Gemmell F, Varjo J. 2003. Sensitivity of mixture modelling to end‐member selection. Int J Remote Sens. 24(7):1559–1575.
  • Ullah K, Zhang J. 2020. GIS-based flood hazard mapping using relative frequency ratio method: A case study of Panjkora River Basin, eastern Hindu Kush, Pakistan. PLOS One. 15(3):e0229153.
  • UN. 2020. The revision of world population prospects. New York (NY): United Nations.
  • Vapnik V. 1999. The nature of statistical learning theory. New York (NY): Springer.
  • Villa A, Chanussot J, Benediktsson JA, Jutten C. 2011. Spectral unmixing for the classification of hyperspectral images at a finer spatial resolution. IEEE J Sel Top Signal Process. 5(3):521–533.
  • Virnodkar SS, Pachghare VK, Patil VC, Jha SK. 2020. Application of machine learning on remote sensing data for sugarcane crop classification: A Review. In S Fong, Dey N, Joshi A, edtiors. Proceedings of the ICT Analysis and Applications. Singapore: Springer.
  • WB. 2010. Climate risks and adaptation in Asian coastal megacities. Washington, DC: World Bank.
  • WBG. 2017. Urban development in Phnom Penh. Phnom Penh: World Bank.
  • Wei J, Wang X. 2020. An overview on linear unmixing of hyperspectral data. Math Prob Eng. 2020:1–12.
  • Winsemius HC, Aerts Jeroen CJH, van Beek Ludovicus PH, Bierkens Marc FP, Bouwman A, Jongman B, Kwadijk Jaap CJ, Ligtvoet W, Lucas PL, van Vuuren Detlef P, et al. 2016. Global drivers of future river flood risk. Nat Clim Chang. 6(4):381–385.
  • Wu C. 2004. Normalized spectral mixture analysis for monitoring urban composition using ETM + imagery. Remote Sens Environ. 93(4):480–492.
  • Xu F, Somers B. 2021. Unmixing-based Sentinel-2 downscaling for urban land cover mapping. ISPRS J Photogramm Remote Sens. 171:133–154.
  • Yang J, He Y. 2017. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery. Int J Appl Earth Obs Geoinf. 54:53–64.
  • Yousefi S, Pourghasemi HR, Emami SN, Pouyan S, Eskandari S, Tiefenbacher JP. 2020. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci Rep. 10(1):12144.
  • Youssef AM, Pradhan B, Hassan AM. 2011. Flash flood risk estimation along the St. Katherine road, southern Sinai, Egypt using GIS based morphometry and satellite imagery. Environ Earth Sci. 62(3):611–623.
  • Zhang M, Shi W, Xu Z. 2020. Systematic comparison of five machine-learning models in classification and interpolation of soil particle size fractions using different transformed data. Hydrol Earth Syst Sci. 24(5):2505–2526.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.