100
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Land use/land cover mapping from airborne hyperspectral images with machine learning algorithms and contextual information

ORCID Icon & ORCID Icon

References

  • Akar A, Gökalp E, Akar Ö, Yılmaz V. 2017. Improving classification accuracy of spectrally similar land covers in the rangeland and plateau areas with a combination of WorldView-2 and UAV images. Geocarto Int. 32(9):990–1003.
  • Akar Ö, Güngör O. 2015. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int J Remote Sens. 36(2):442–464.
  • Akçay HG, Aksoy S. 2008. Automatic detection of geospatial objects using multiple hierarchical segmentations. IEEE Trans Geosci Remote Sens. 46(7):2097–2111.
  • Ali MU, Ahmed S, Ferzund J, Mehmood A, Rehman A. 2017. Using PCA and factor analysis for dimensionality reduction of bio-informatics data. Int J Adv Comp Sci Appl. 8(5)1–12.
  • AlSuwaidi A, Grieve B, Yin H. 2018. Combining spectral and texture features in hyperspectral image analysis for plant monitoring. Meas Sci Technol. 29(10):104001.
  • Anys H, Bannari A, He D, Morin D. 1994. Texture analysis for the mapping of urban areas using airborne meis-ii images. Proceedings of the First International Airborne Remote Sensing Conference and Exhibition. Vol. 3. p. 231–245.
  • Archer KJ, Kimes RV. 2008. Empirical characterization of random forest variable importance measures. Comput Stat Data Anal. 52(4):2249–2260.
  • Baatz M. 2000. Multi resolution segmentation: an optimum approach for high quality multi scale image segmentation. Beutrage Zum AGIT-Symposium. Salzburg, Heidelberg. p. 12–23.
  • Baysal G. 2013. Urban land use and land cover change analysis and modeling a case study area Malatya, Turkey [master’s thesis]. Münster (Germany): Institute for Geoinformatics (IFGI), Westfälische Wilhelms-Universität.
  • Benediktsson JA, Palmason JA, Sveinsson JR. 2005. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens. 43(3):480–491.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Breiman L. 2002. Manual on setting up, using, and understanding random forests V3.1. Vol. 1. Berkeley (CA): Statistics Department, University of California. p. 58.
  • Breiman L, Cutler A. 2005. Random forests. Berkeley. [accessed 2021 Sep 10]. http://www.stat.berkeley.edu/∼breiman/RandomForests/
  • Bülbül S, Köse A. 2010. Türkiye’de bölgeleraras i iç göç hareketlerinin çok boyutlu ölçekleme yöntemi ile incelenmesi. Istanbul University Journal of the School of Business Administration. 39(1):75–94.
  • Chen C-h. 2007. Image processing for remote sensing. Boca Raton: CRC Press.
  • Chen Y, Jiang H, Li C, Jia X, Ghamisi P. 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sens. 54(10):6232–6251.
  • Comon P. 1994. Independent component analysis, a new concept? Signal Process. 36(3):287–314.
  • Congalton RG, Green K. 2019. Assessing the accuracy of remotely sensed data: principles and practices. 3rd ed. Boca Raton: CRC Press; p. 328.
  • Congalton RG, Green K. 1999. Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton, FL: Lewis Publications; p. 137.
  • Cox MA, Cox TF. 2008. Multidimensional scaling. In Handbook of data visualization. Berlin, Heidelberg: Springer. p. 315–347.
  • Dalla Mura M, Benediktsson JA, Waske B, Bruzzone L. 2010. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens. 48(10):3747–3762.
  • Dalla Mura M, Fauvel M. 2014. Image analysis of hyperspectral data using mathematical morphology. Zenodo. http://prodinra.inra.fr/?locale=fr#!ConsultNotice:391260.
  • Daugman JG. 1980. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res. 20(10):847–856.
  • Demir B, Ertürk S. 2009. Improving SVM classification accuracy using a hierarchical approach for hyperspectral images. 2009 16th IEEE International Conference on Image Processing (ICIP). p. 2849–2852.
  • Dronova I, Gong P, Wang L. 2011. Object-based analysis and change detection of major wetland cover types and their classification uncertainty during the low water period at Poyang Lake, China. Remote Sens Environ. 115(12):3220–3236.
  • Eleyan A, Demirel H. 2011. Co-occurrence matrix and its statistical features as a new approach for face recognition. Turk J Electr Eng Comput Sci. 19(1):97–107.
  • Envi user manuel. 2019. [accessed 2019 April 5]. https://www.harrisgeospatial.com/docs/backgroundtexturemetrics.html.
  • Fauvel M, Benediktsson JA, Chanussot J, Sveinsson JR. 2008. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens. 46(11):3804–3814.
  • Fogel I, Sagi D. 1989. Gabor filters as texture discriminator. Biol Cybern. 61(2):103–113.
  • Foody GM. 2004. Thematic map comparison. Photogramm Eng Remote Sens. 70(5):627–633.
  • Gabor D. 1946. Theory of communication. Part 1: the analysis of information. J Inst Electr Eng III. 93(26):429–441.
  • Gao J. 2009. Digital analysis of remotely sensed imagery. New York: McGraw-Hill Education.
  • Ghamisi P, Ali A-R, Couceiro MS, Benediktsson JA. 2015. A novel evolutionary swarm fuzzy clustering approach for hyperspectral imagery. IEEE J Sel Top Appl Earth Observations Remote Sens. 8(6):2447–2456.
  • Ghamisi P, Couceiro MS, Fauvel M, Benediktsson JA. 2014. Integration of segmentation techniques for classification of hyperspectral images. IEEE Geosci Remote Sens Lett. 11(1):342–346.
  • Ghamisi P, Couceiro MS, Martins FM, Benediktsson JA. 2014. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. IEEE Trans Geosci Remote Sens. 52(5):2382–2394.
  • Ghamisi P, Plaza J, Chen Y, Li J, Plaza A. 2017. Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci Remote Sens Mag. 5(1):8–32.
  • Ghamisi P, Yokoya N, Li J, Liao W, Liu S, Plaza J, Rasti B, Plaza A. 2017. Advances in hyperspectral image and signal processing: a comprehensive overview of the state of the art. IEEE Geosci Remote Sens Mag. 5(4):37–78.
  • Giri C. 2016. Remote sensing of land use and land cover: principles and applications. CRC Press. https://books.google.com.tr/books?id=uyjNBQAAQBAJ.
  • Gormus ET, Akar O. 2019. Land use mapping of Bergama test area using headwall hyperspec VNIR images. International Symposium on Applied Geoinformatics. p. 1–8.
  • Gormus ET, Canagarajah N, Achim A. 2012. Dimensionality reduction of hyperspectral images using empirical mode decompositions and wavelets. IEEE J Sel Top Appl Earth Observations Remote Sens. 5(6):1821–1830.
  • Haghighat M. 2016. Gabor feature extraction-file exchange-MATLAB Central. December 10, 2016.
  • Haghighat M, Zonouz S, Abdel-Mottaleb M. 2015. Cloudid: trustworthy cloud-based and cross-enterprise biometric identification. Expert Syst Appl. 42(21):7905–7916.
  • Haralick RM, Shanmugam K, Dinstein IH. 1973. Textural features for image classification. IEEE Trans Syst, Man, Cybern. SMC-3(6):610–621.
  • HGK. 2019. Harita Genel Komutanlɩğɩ veri taleb formu. HGK. https://www.harita.gov.tr/images/kurumsal/ec160682cb3586d.pdf.
  • Hsu P-H. 2007. Feature extraction of hyperspectral images using wavelet and matching pursuit. ISPRS J Photogramm Remote Sens. 62(2):78–92.
  • Hu M-K. 1962. Visual pattern recognition by moment invariants. IRE Trans Inf Theory. 8(2):179–187.
  • Imani M, Ghassemian H. 2016. GLCM, Gabor, and Morphology profiles fusion for hyperspectral image classification. 2016 24th Iranian Conference on Electrical Engineering (ICEE). p. 460–465.
  • Landgrebe DA. 2005. Signal theory methods in multispectral remote sensing. Vol. 29. Hoboken (NJ): John Wiley & Sons.
  • Liaw A, Wiener M. 2002. Classification and regression by random forest. R News. 2(3):18–22.
  • Melgani F, Bruzzone L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens. 42(8):1778–1790.
  • Kavitha K, Arivazhagan S. 2010. Combined feature based hyperspectral image classification technique using support vector machines. Zenodo.
  • Pal M. 2005. Random forest classifier for remote sensing classification. Int J Remote Sens. 26(1):217–222.
  • Pesaresi M, Benediktsson JA. 2001. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens. 39(2):309–320.
  • Pontius RG, Jr, Millones M. 2011. Death to kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens. 32(15):4407–4429.
  • Rodarmel C, Shan J. 2002. Principal component analysis for hyperspectral image classification. Surv Land Inf Sci. 62(2):115–122.
  • Van Der Maaten L, Postma E, Herik JVd. 2009. Dimensionality reduction: a comparative review. J Mach Learn Res. 13:1066–1071.
  • Watts JD, Powell SL, Lawrence RL, Hilker T. 2011. Improved classification of conservation tillage adoption using high temporal and synthetic satellite imagery. Remote Sens Environ. 115(1):66–75.
  • Yong AG, Pearce S. 2013. A beginner’s guide to factor analysis: focusing on exploratory factor analysis. TQMP. 9(2):79–94.
  • Zhang D, Yuan L, Wang S, Yu H, Zhang C, He D, Han G, Wang J, Wang Y. 2019. Wide swath and high resolution airborne hyperspectral imaging system and flight validation. Sensors. 19(7):1667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.