361
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

PSI and GNSS derived ground subsidence detection in the UNESCO Heritage City of Ahmedabad, Western India

, &
Pages 7639-7658 | Received 30 Apr 2021, Accepted 09 Sep 2021, Published online: 05 Oct 2021

References

  • Ader T, Avouac J-P, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota SN, et al. 2012. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: implications for seismic hazard. J Geophys Res. 117(B4). doi:10.1029/2011JB009071
  • Aimaiti Y, Yamazaki F, Liu W. 2018. Multi-sensor InSAR analysis of progressive land subsidence over the Coastal City of Urayasu, Japan. Remote Sens. 10(8):1304.
  • Alsdorf DE, Melack JM, Dunne T, Mertes LA, Hess LL, Smith LC. 2000. Interferometric radar measurements of water level changes on the Amazon flood plain. Nature. 404(6774):174–177.
  • Altamimi Z, Rebischung P, Métivier L, Collilieux X. 2016. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions: ITRF2014. J Geophys Res Solid Earth. 121(8):6109–6131.
  • Aslan G, Cakır Z, Ergintav S, Lasserre C, Renard F. 2018. Analysis of secular ground motions in Istanbul from a long-term InSAR time-series (1992–2017). Remote Sensing. 10(3):408.
  • Atzori S, Hunstad I, Chini M, Salvi S, Tolomei C, Bignami C, Stramondo S, Trasatti E, Antonioli A, Boschi E. 2009. Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy). Geophys Res Lett. 36(15). doi:10.1029/2009GL039293
  • Bacques G, de Michele M, Foumelis M, Raucoules D, Lemoine A, Briole P. 2020. Sentinel optical and SAR data highlights multi-segment faulting during the 2018 Palu-Sulawesi earthquake (Mw 7.5). Sci Rep. 10(1):9103.
  • Balsubramanayan PB. 1971. Geology and groundwater resources of Ahmedabad city, with special reference to its water supply, Gujarat. Report of GSI, Gujarat Circle (1986).
  • Bayer B, Simoni A, Schmidt D, Bertello L. 2017. Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng Geol. 226:20–32.
  • Béjar-Pizarro M, Carrizo D, Socquet A, Armijo R, Barrientos S, Bondoux F, Bonvalot S, Campos J, Comte D, de Chabalier JB, et al. 2010. Asperities and barriers on the seismogenic zone in North Chile: state-of-the-art after the 2007 Mw 7.7 Tocopilla earthquake inferred by GPS and InSAR data. Geophys J Int. 183(1):390–406.
  • Bekaert DPS, Hooper A, Wright TJ. 2015. A spatially variable power law tropospheric correction technique for InSAR data. J Geophys Res Solid Earth. 120(2):1345–1356.
  • Bell MA, Elliott JR, Parsons BE. 2011. Interseismic strain accumulation across the Manyi fault (Tibet) prior to the 1997 Mw 7.6 earthquake. Geophys Res Lett. 38(24). doi:10.1029/2011GL049762
  • Bettinelli P, Avouac J-P, Flouzat M, Jouanne F, Bollinger L, Willis P, Chitrakar GR. 2006. Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J Geodesy. 80(8–11):567–589.
  • Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M, Verdun A. 1994. Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscripta Geodaetica. 19(6):367–386.
  • Bhattacharya S, Hyodo M, Goda K, Tazoh T, Taylor C. 2011. Liquefaction of soil in the Tokyo Bay area from the 2011 Tohoku (Japan) earthquake. Soil Dyn Earthquake Eng. 31(11):1618–1628.
  • Biggs J, Wright TJ. 2020. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat Commun. 11(1):3863.
  • Bilham R, Blume F, Bendick R, Gaur V. 1998. Geodetic constraints on the translation and deformation of India: implications for future great Himalayan earthquakes. Curr Sci. 74: 213–229.
  • Biswas K, Chakravarty D, Mitra P, Misra A. 2017. Spatial-correlation based persistent scatterer interferometric study for ground deformation. J Indian Soc Remote Sens. 45(6):913–926.
  • Bonì R, Bordoni M, Colombo A, Lanteri L, Meisina C. 2018. Landslide state of activity maps by combining multi-temporal A-DInSAR (LAMBDA). Remote Sens Environ. 217:172–190.
  • Bonì R, Herrera G, Meisina C, Notti D, Béjar-Pizarro M, Zucca F, González PJ, Palano M, Tomás R, Fernández J, et al. 2015. Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Eng Geol. 198:40–52.
  • Budillon A, Johnsy AC, Schirinzi G. 2019. Urban tomographic imaging using polarimetric SAR data. Remote Sens. 11(2):132.
  • Bui LK, Featherstone WE, Filmer MS. 2020. Disruptive influences of residual noise, network configuration and data gaps on InSAR-derived land motion rates using the SBAS technique. Remote Sens Environ. 247:111941.
  • Bürgmann R, Hilley G, Ferretti A, Novali F. 2006. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geol. 34(3):221–224.
  • Bürgmann R, Rosen PA, Fielding EJ. 2000. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu Rev Earth Planet Sci. 28(1):169–209.
  • Canaslan CF, Üstün A, Lazecky M, Perissin D. 2016a. Capability of detecting rapid subsidence with COSMO SKYMED and SENTINEL-1 Dataset over Konya City Proc. ‘Living Planet Symposium 2016’, Prague, Czech Republic, 9–13 May 2016 (ESA SP-740, August, 2016).
  • Canaslan CF, Ustun A, Lazecky M. 2016b. Capability of Detecting Rapid Subsidence with COSMO SKYMED and Sentinel-1 Dataset over Konya City. In: Living Planet Symposium. Vol. 740. p. 295.
  • Carrère L, Lyard F, Cancet M, Guillot A, Picot N. Others 2016. FES 2014, a new tidal model—Validation results and perspectives for improvements. In: Proceedings of the ESA living planet symposium. p. 9–13.
  • CGWB. 1990, 2000, 2007. Groundwater Year Books; Groundwater regime monitoring data of CGWB, WCR. Reports of CGWB, WCR, Ahmedabad.
  • Chatterjee RS, Fruneau B, Rudant JP, Roy PS, Frison P-L, Lakhera RC, Dadhwal VK, Saha R. 2006. Subsidence of Kolkata (Calcutta) City, India during the 1990s as observed from space by Differential Synthetic Aperture Radar Interferometry (D-InSAR) technique. Remote Sens Environ. 102(1-2):176–185.
  • Chen ZR. 2011. Poroelastic model for induced stresses and deformations in hydrocarbon and geothermal reservoirs. J Petrol Sci Eng. 80(1):41–52.
  • Chen Z, Wang J, Huang X. 2018. Land subsidence monitoring in greater Vancouver through synergy of InSAR and polarimetric analysis. Can J Remote Sens. 44(3):202–214.
  • Chen CW, Zebker HA. 2000. Network approaches to two-dimensional phase unwrapping: intractability and two new algorithms. J Opt Soc Am A Opt Image Sci Vis. 17(3):401–414.
  • Chopra S, Yadav RBS, Patel H, Kumar S, Rao KM, Rastogi BK, Hameed A, Srivastava S. 2008. The Gujarat (India) seismic network. Seismol Res Lett. 79(6):806–815.
  • Choudhury P, Gahalaut K, Dumka R, Gahalaut VK, Singh AK, Kumar S. 2018. GPS measurement of land subsidence in Gandhinagar, Gujarat (Western India), due to groundwater depletion. Environ Earth Sci. 77(22):770.
  • Crosetto M, Biescas E, Duro J, Closa J, Arnaud A. 2008. Generation of advanced ERS and Envisat interferometric SAR products using the stable point network technique. Photogramm Eng Remote Sens. 74(4):443–450.
  • Crosetto M, Monserrat O, Cuevas-González M, Devanthéry N, Crippa B. 2016. Persistent scatterer interferometry: a review. ISPRS J Photogramm Remote Sens. 115:78–89.
  • Delgado Blasco JM, Foumelis M, Stewart C, Hooper A. 2019. Measuring urban subsidence in the rome metropolitan area (Italy) with Sentinel-1 SNAP-StaMPS persistent scatterer interferometry. Remote Sensing. 11(2):129.
  • Du Z, Ge L, Li X, Ng AH. 2016. Subsidence monitoring over the Southern Coalfield, Australia using both L-Band and C-Band SAR time series analysis. Remote Sens. 8(7):543.
  • Du J, Olson JE. 2001. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts. J Petrol Sci Eng. 30(3–4):181–197.
  • Dumka RK, Chopra S, Prajapati S. 2019b. GPS derived crustal deformation analysis of Kachchh, zone of 2001(M7.7) earthquake, Western India. Quat Int. 507:295–301.
  • Dumka R, Kotlia B, Kumar K, Satyal G. 2014a. Quantification of crustal strain rate in Kumaun Himalaya (India) using GPS measurements of crustal deformation. Himalayan Geol. 35:146–155.
  • Dumka R, Kotlia B, Kumar K, Satyal G, Joshi L. 2014b. Crustal Deformation Revealed by GPS in Kumaun Himalaya, India. J Mt Sci. 11(1):41–50.
  • Dumka RK, Kotlia BS, SuriBabu D, Narain P, Prajapati S. 2019a. Present-day crustal deformation and geodetic strain in the vicinity of Dholavira – Harappan civilization site, Kachchh, western part of the Indian plate. Quat Int. 507:324–332.
  • Dumka R, Rastogi B. 2013. Crustal strain in the rupture zone of 2001 Bhuj earthquake. Annual Report. 2013:45–46.
  • Dumka RK, SuriBabu D, Malik K, Prajapati S, Narain P. 2020. PS-InSAR derived deformation study in the Kachchh, Western India. Appl Comput Geosci. 8:100041.
  • Dumka RK, Suribabu D, Narain P, Kothyari GC, Taloor AK, Prajapati S. 2021. PSInSAR and GNSS derived deformation study in the west part of Narmada Son Lineament (NSL), western India. Quater Sci Adv. 4 (2021):100035.
  • Dwivedi V, Dubey R, Maibam T, Pancholi V, Chopra S, Rastogi B. 2017. Assessment of Liquefaction potential of soil in Ahmedabad Region, Western India. J Indian Geophys Union. 21:116–123.
  • Dwivedi VK, Dubey RK, Pancholi V, Rout MM, Singh P, Sairam B, Chopra S, Rastogi BK. 2020. Multi criteria study for seismic hazard assessment of UNESCO world heritage Ahmedabad City, Gujarat, Western India. Bull Eng Geol Environ. 79(4):1721–1733.
  • Eriksen HØ, Lauknes TR, Larsen Y, Corner GD, Bergh SG, Dehls J, Kierulf HP. 2017. Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite SAR interferometry (2D InSAR). Remote Sens Environ. 191:297–312.
  • Estey LH, Meertens CM. 1999. TEQC: the multi-purpose toolkit for GPS/GLONASS Data. GPS Solutions. 3(1):42–49.
  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, et al. 2007. The Shuttle radar topography mission. Rev Geophys. 45(2):1–33.
  • Fernandez J, Prieto JF, Escayo J, Camacho AG, Luzón F, Tiampo KF, Palano M, Abajo T, Pérez E, Velasco J, et al. 2018. Modeling the two- and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Sci Rep. 8(1):14782.
  • Ferretti A, Prati C, Rocca F. 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens. 38(5):2202–2212.
  • Ferretti A, Prati C, Rocca F. 2001. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens. 39(1):8–20..
  • Ferretti A, Savio G, Barzaghi R, Borghi A, Musazzi S, Novali F, Prati C, Rocca F. 2007. Submillimeter Accuracy of InSAR Time Series: Experimental Validation. IEEE Trans Geosci Remote Sens. 45(5):1142–1153.
  • Fiaschi S, Tessitore S, Bonì R, Di Martire D, Achilli V, Borgstrom S, Ibrahim A, Floris M, Meisina C, Ramondini M, et al. 2017. From ERS-1/2 to Sentinel-1: two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GIScience Remote Sens. 54(3):305–328.
  • Floris M, Fontana A, Tessari G, Mulè M. 2019. Subsidence zonation through satellite interferometry in coastal plain environments of NE Italy: a possible tool for geological and geomorphological mapping in urban areas. Remote Sensing. 11(2):165.
  • Foumelis M, Delgado Blasco JM, Desnos Y, Engdahl M, Fernandez D, Veci L, Lu J, Wong C. 2018. Esa Snap – Stamps integrated processing for sentinel-1 persistent scatterer interferometry. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. p. 1364–1367.
  • Gahalaut VK, Gahalaut K, Dumka RK, Chaudhury P, Yadav RK. 2019. Geodetic evidence of high compression across seismically active Kachchh Paleorift, India. Tectonics. 38(8):3097–3107.
  • Garg KK, Anantha KH, Nune R, Akuraju VR, Singh P, Gumma MK, Dixit S, Ragab R. 2020. Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. J Hydrol: Reg Stud. 31:100732.
  • Geertsma J. 1973. Land subsidence above compacting oil and gas reservoirs. J Petrol Technol. 25(6):734–744.
  • Gens R, Van Genderen JL. 1996. Review Article SAR interferometry—issues, techniques, applications. Int J Remote Sens. 17(10):1803–1835.
  • Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. 2010. Food security: the challenge of feeding 9 billion people. Science. 327(5967):812–818.
  • Goel RK. 2001. Performance of buildings during the January 26, 2001 Bhuj earthquake. In Earthquake Spectra, Earthquake Engineering Research Institute, Oakland, CA.
  • Grandin R, Doin M-P, Bollinger L, Pinel-Puysségur B, Ducret G, Jolivet R, Sapkota SN. 2012. Long-term growth of the Himalaya inferred from interseismic InSAR measurement. Geology. 40(12):1059–1062.
  • Gupte P. 2011. Ahmedabad–Gandhinagar Twin City. Gujarat. Population. 2021, 2023.
  • Hanasaki N, Yoshikawa S, Pokhrel Y, Kanae S. 2018. A global hydrological simulation to specify the sources of water used by humans. Hydrol Earth Syst Sci. 22(1):789–817.
  • Herring T, King R, McClusky S. 2010. GAMIT reference manual, release 10.4. Massachusetts Institute of Technology, Cambridge.
  • Hooper A, Bekaert D, Spaans K, Arıkan M. 2012. Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics. 514-517:1–13.
  • Hung W-C, Hwang C, Liou J-C, Lin Y-S, Yang H-L. 2012. Modeling aquifer-system compaction and predicting land subsidence in central Taiwan. Eng Geol. 147-148:78–90.
  • IE. 2018. Indian Express, 19 August 2018.
  • Jade S. 2004. Estimates of plate velocity and crustal deformation in the Indian subcontinent using GPS geodesy. Curr Sci. 86(10):1443–1448.
  • Jade S, Mir RR, Vivek CG, Shrungeshwara TS, Parvez IA, Chandra R, Babu DS, Gupta SV, Ankit Rajana SSK, Gaur VK. 2020. Crustal deformation rates in Kashmir valley and adjoining regions from continuous GPS measurements from 2008 to 2019. Sci Rep. 10(1):17927.
  • Jade S, Mukul M, Gaur V, Kumar K, Shrungeshwar T, Satyal G, Dumka R, Jagannathan S, Ananda M, Kumar P, et al. 2014. Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: Significant insights from 1995-2008 GPS time series. J Geod. 88(6):539–557.
  • Jade S, Shrungeshwara TS, Kumar K, Choudhury P, Dumka RK, Bhu H. 2017. India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep. 7(1):11439.
  • Kaila KL, Tewari HC, Krishna VG, Dixit MM, Sarkar D, Reddy MS. 1990. Deep seismic sounding studies in the north Cambay and Sanchor basins, India. Geophys J Int. 103(3):621–637.
  • Karila K, Karjalainen M, Hyyppä J, Koskinen J, Saaranen V, Rouhiainen P. 2013. A comparison of precise levelling and persistent scatterer SAR interferometry for building subsidence rate measurement. IJGI. 2(3):797–816.
  • Khorrami M, Abrishami S, Maghsoudi Y, Alizadeh B, Perissin D. 2020. Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties. Sci Rep. 10(1):11357.
  • Khorrami M, Alizadeh B, Ghasemi Tousi E, Shakerian M, Maghsoudi Y, Rahgozar P. 2019. How groundwater level fluctuations and geotechnical properties lead to asymmetric subsidence: a PSInSAR analysis of land deformation over a transit corridor in the Los Angeles Metropolitan Area. Remote Sensing. 11(4):377.
  • King RW, Bock Y. 1998. Documentation for the GAMIT GPS Processing Software Release 10.0. Massachusetts Institute of Technology, Cambridge.
  • Klees R, Massonnet D. 1998. Deformation measurements using SAR interferometry: potential and limitations. Geologie en Mijnbouw. 77(2):161–176.
  • Klein Goldewijk K, Beusen A, Janssen P. 2010. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene. 20(4):565–573.
  • Krassakis P, Kazana S, Chen F, Koukouzas N, Parcharidis I, Lekkas E. 2021. Detecting subsidence spatial risk distribution of ground deformation induced by urban hidden streams. Geocarto Int. 36(6):622–639.
  • Kumar A, Rao SVR, Parchure PK. 1998. Urban Hydrology and Ground Water Scenario Ahmedabad Metropolis Gujarat State, West Central Region, Ministry of Water Resource, Ahmedabad, India.
  • Lagler K, Schindelegger M, BöHm J, Krasna H, Nilsson T. 2013. GPT2: empirical slant delay model for radio space geodetic techniques. Geophys Res Lett. 40(6):1069–1073.
  • Letellier T, Lyard F, Lef́evre F. 2004. The new global tidal solution: Fes2004. In Proceeding of the Ocean Surface Topography Science Team Meeting, St. Petersburg, Florida. p. 4–6.
  • Li Y, Gong H, Zhu L, Li X. 2017. Measuring spatiotemporal features of land subsidence, groundwater drawdown, and compressible layer thickness in Beijing Plain, China. Water. 9(1):64.
  • Liu J, Song Z, Lu Y, Bai Y, Qian W, Kanungo DP, Chen Z, Wang Y. 2019. Monitoring of vertical deformation response to water draining–recharging conditions using BOFDA-based distributed optical fiber sensors. Environ Earth Sci. 78(14):406.
  • Lyard FH, Allain DJ, Cancet M, Carrère L, Picot N. 2021. FES2014 global ocean tide atlas: design and performance. Ocean Sci. 17:615–649.
  • Mahesh P, Catherine JK, Gahalaut VK, Kundu B, Ambikapathy A, Bansal A, Premkishore L, Narsaiah M, Ghavri S, Chadha RK, et al. 2012. Rigid Indian plate: Constraints from GPS measurements. Gondwana Res. 22(3-4):1068–1072.
  • Malik K, Kumar D, Perissin D. 2019. Assessment of subsidence in Delhi NCR due to groundwater depletion using TerraSAR-X and persistent scatterers interferometry. Imaging Sci J. 67(1):1–7.
  • Massironi M, Zampieri D, Bianchi M, Schiavo A, Franceschini A. 2009. Use of PSInSARTM data to infer active tectonics: Clues on the differential uplift across the Giudicarie belt (Central-Eastern Alps, Italy). Tectonophysics. 476(1-2):297–303.
  • McCarthy D, Petit G. 2004. IERS Technical Note; 32 Frankfurt am Main.
  • Merryman Boncori JP, Papoutsis I, Pezzo G, Tolomei C, Atzori S, Ganas A, Karastathis V, Salvi S, Kontoes C, Antonioli A. 2015. The February 2014 Cephalonia Earthquake (Greece): 3D Deformation Field and Source Modeling from Multiple SAR Techniques. Seismol Res Lett. 86(1):124–137.
  • Modoni G, Darini G, Spacagna RL, Saroli M, Russo G, Croce P. 2013. Spatial analysis of land subsidence induced by groundwater withdrawal. Eng Geol. 167:59–71.
  • Ouchi K. 2013. Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens. 5(2):716–807.
  • Pacheco-Martínez J, Cabral-Cano E, Wdowinski S, Hernández-Marín M, Ortiz-Lozano JÁ, Zermeño-de-León ME. 2015. Application of InSAR and gravimetry for land subsidence hazard zoning in Aguascalientes, Mexico. Remote Sensing. 7(12):17035–17050.
  • Paul J, Bürgmann R, Gaur VK, Bilham R, Larson KM, Ananda MB, Jade S, Mukal M, Anupama TS, Satyal G, et al. 2001. The motion and active deformation of India. Geophys Res Lett. 28(4):647–650.
  • Perissin D. 2016. Interferometric SAR multitemporal processing: techniques and applications. In Multitemporal remote sensing: methods and applications, ed. Yifang Ban, p. 145–176. Cham: Springer International Publishing.
  • Perissin D, Wang Z, Lin H. 2012. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J Photogramm Remote Sens. 73:58–67.
  • Perrone G, Morelli M, Piana F, Fioraso G, Nicolò G, Mallen L, Cadoppi P, Balestro G, Tallone S. 2013. Current tectonic activity and differential uplift along the Cottian Alps/Po Plain boundary (NW Italy) as derived by PS-InSAR data. J Geodyn. 66:65–78.
  • Peyret M, Masson F, Yavasoglu H, Ergintav S, Reilinger R. 2013. Present-day strain distribution across a segment of the central bend of the North Anatolian Fault Zone from a Persistent-Scatterers InSAR analysis of the ERS and Envisat archives. Geophys J Int. 192(3):929–945.
  • Psimoulis P, Ghilardi M, Fouache E, Stiros S. 2007. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical levelling and GPS data. Eng Geol. 90(1-2):55–70.
  • Raju K, Manasi S, Latha N. Others 2008. Emerging ground water crisis in urban areas: a case study of ward no. 39. Bangalore: Institute for Social and Economic Change Bangalore.
  • Rateb A, Kuo C-Y. 2019. Quantifying vertical deformation in the Tigris–Euphrates basin due to the groundwater abstraction: insights from GRACE and Sentinel-1 Satellites. Water. 11(8):1658.
  • Riel B, Simons M, Ponti D, Agram P, Jolivet R. 2018. Quantifying ground deformation in the Los Angeles and Santa Ana coastal basins due to groundwater withdrawal. Water Resour Res. 54(5):3557–3582.
  • Sahu P, Sikdar PK. 2011. Threat of land subsidence in and around Kolkata City and East Kolkata Wetlands, West Bengal, India. J Earth Syst Sci. 120(3):435–446.
  • Segall P. 1985. Stress and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga Earthquake. J Geophys Res. 90(B8):6801–6816.
  • Shafieardekani M, Hatami M. 2013. Forecasting land use change in suburb by using time series and spatial approach; evidence from intermediate cities of Iran. Eur J Sci Res. 116:199–208.
  • Smith JH, Wickham JD, Stehman SV, Yang L. 2002. Impacts of patch size and land-cover heterogeneity on thematic image classification accuracy. Photogramm Eng Remote Sens. 68(1):65–70.
  • Soldato MD, Farolfi G, Rosi A, Raspini F, Casagli N. 2018. Subsidence evolution of the Firenze-Prato-Pistoia Plain (Central Italy) combining PSI and GNSS data. Remote Sens. 10(7):1146.
  • Sowter A, Che Amat A, Cigna F, Marsh S, Athab A, Alshammari L. 2016. Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: results using the Intermittent SBAS (ISBAS) technique. Int J Appl Earth Obs Geoinf. 52:230–242.
  • Stevens VL, Avouac JP. 2015. Interseismic coupling on the main Himalayan thrust. Geophys Res Lett. 42(14):5828–5837.
  • Suganthi S, Elango L. 2020. Estimation of groundwater abstraction induced land subsidence by SBAS technique. J Earth Syst Sci. 129(1):46.
  • Takada Y, Sagiya T, Nishimura T. 2018. Interseismic crustal deformation in and around the Atotsugawa fault system, central Japan, detected by InSAR and GNSS. Earth Planet Space. 70(1):32.
  • Tangdamrongsub N, Han S-C, Jasinski MF, Šprlák M. 2019. Quantifying water storage change and land subsidence induced by reservoir impoundment using GRACE, Landsat, and GPS data. Remote Sens Environ. 233:111385.
  • Tessari G, Floris M, Pasquali P. 2017. Phase and amplitude analyses of SAR data for landslide detection and monitoring in non-urban areas located in the North-Eastern Italian pre-Alps. Environ Earth Sci. 76(2):85.
  • TI. 2018. Times of India, 6 September 2018.
  • Tiwari VN. 2016. Groundwater Year book 2015-2016, Gujarat state and UT of Daman and Diu, www.cgwb.gov.in.
  • Tosi L, Da Lio C, Strozzi T, Teatini P. 2016. Combining L- and X-Band SAR interferometry to assess ground displacements in heterogeneous coastal environments: the Po River Delta and Venice Lagoon, Italy. Remote Sensing. 8(4):308.
  • Van Leijen FJ. 2014. Persistent scatterer interferometry based on geodetic estimation theory.
  • Veci L, Lu J, Prats-Iraola P, Scheiber R, Collard F, Fomferra N, Engdahl M. 2014. The Sentinel-1 Toolbox. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July; p. 1–3.
  • Verma RK. 2014. Technical report series, Ground water brochure Ahmedabad District, Gujarat, www.cgwb.gov.in.
  • Vilardo G, Ventura G, Terranova C, Matano F, Nardò S. 2009. Ground deformation due to tectonic, hydrothermal, gravity, hydrogeological, and anthropic processes in the Campania Region (Southern Italy) from Permanent Scatterers Synthetic Aperture Radar Interferometry. Remote Sens Environ. 113(1):197–212.
  • Wada Y, Wisser D, Bierkens MFP. 2014. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst Dynam. 5(1):15–40.
  • Wang HF. 2000. Theory of linear poroelasticity. Princeton (NJ): Princeton University Press. p. 287.
  • Wang Z, Balz T, Zhang L, Perissin D, Liao M. 2018. Using TSX/TDX Pursuit Monostatic SAR Stacks for PS-InSAR Analysis in Urban Areas. Remote Sensing. 11(1):26.
  • Wasowski J, Bovenga F. 2014. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Eng Geol. 174:103–138.
  • Werner C, Wegmuller U, Strozzi T, Wiesmann A. 2003. Interferometric point target analysis for deformation mapping. In: IGARSS 2003 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Vol. 7. p. 4362–4364.
  • Wright TJ, Parsons BE, Lu Z. 2004. Toward mapping surface deformation in three dimensions using InSAR. Geophys Res Lett. 31(1):1–5.
  • Yang J, Cao G, Han D, Yuan H, Hu Y, Shi P, Chen Y. 2019. Deformation of the aquifer system under groundwater level fluctuations and its implication for land subsidence control in the Tianjin coastal region. Environ Monit Assess. 191(3):162.
  • Zhang J-Z, Huang H-j, Bi H-b. 2015. Land subsidence in the modern Yellow River Delta based on InSAR time series analysis. Nat Hazards. 75(3):2385–2397.
  • Zhang P, Yang ZX, Gupta HK, Bhatia SC, Shedlock KM. 1999. Global Seismic Hazard Assessment Program (GSHAP) in continental Asia. http://hdl.handle.net/2122/1387.
  • Zhou L, Guo J, Hu J, Li J, Xu Y, Pan Y, Shi M. 2017. Wuhan surface subsidence analysis in 2015–2016 based on Sentinel-1A data by SBAS-InSAR. Remote Sensing. 9(10):982.
  • Zhu XX, Tuia D, Mou L, Xia G-S, Zhang L, Xu F, Fraundorfer F. 2017. Deep learning in remote sensing: a review. arXiv:171003959. doi:10.1109/MGRS.2017.2762307

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.