430
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Using satellite estimates of aboveground biomass to assess carbon stocks in a mixed-management, semi-deciduous tropical forest in the Yucatan Peninsula

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 7659-7680 | Received 09 Jun 2021, Accepted 09 Sep 2021, Published online: 22 Sep 2021

References

  • Asner GP. 2010. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22(18):3855–3862.
  • Asner GP, Mascaro J. 2014. Mapping tropical forest carbon: calibrating plot estimates to a simple LiDAR metric. Remote Sens Environ. 140:614–624.
  • Avitabile V, Herold M, Heuvelink GBM, Lewis SL, Phillips OL, Asner GP, Armston J, Ashton PS, Banin L, Bayol N, et al. 2016. An integrated pan-tropical biomass map using multiple reference datasets. Glob Chang Biol. 22(4):1406–1420. doi:10.1111/gcb.13139.26499288
  • Babcock C, Finley AO, Cook BD, Weiskittel A, Woodall CW. 2016. Modeling forest biomass and growth: coupling long-term inventory and LiDAR data. Remote Sens Environ. 182:1–12.
  • Baccini A, Asner GP. 2013. Improving pantropical forest carbon maps with airborne LiDAR sampling. Carbon Manage. 4(6):591–600. doi:10.4155/cmt.13.66.
  • Baskerville GL. 1972. Use of logarithmic regression in the estimation of plant biomass. Can J For Res. 2(1):49–53.
  • Bergstra JS, Bardenet R, Bengio Y, Kégl B, 2011. Algorithms for hyper-parameter optimization. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in neural information processing systems. Vol. 24. United States: Curran Associates, Inc.; p. 2546–2554.
  • Bispo PdC, Rodríguez-Veiga P, Zimbres B, do Couto de Miranda S, Henrique Giusti Cezare C, Fleming S, Baldacchino F, Louis V, Rains D, Garcia M, et al. 2020. Woody aboveground biomass mapping of the Brazilian savanna with a multi-sensor and machine learning approach. Remote Sens. 12(17):2685.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Bonan GB. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 320(5882):1444–1449.
  • Caamal-Sosa JP, Dupuy JM, Torres JLA, Luis J, Stefafoni H, Ruíz AHH, Chim MT, Wayson C, Álvarez MO, Merlín DL, et al. 2016. Estudio de caso del sitio de monitoreo intensivo del carbono, Kaxil Kiuic, Yucatán. Progr Mexicano Carbono; p. 1–89.
  • Carmel Y. 2004. Controlling data uncertainty via aggregation in remotely sensed data. IEEE Geosci. Remote Sens. Lett. 1(2):39–41.
  • Carnevali G, Ramírez IM, González-Iturbe JA. 2003. Flora y vegetación de la Península de Yucatán. In: Colunga-García-Marín P, Larqué-Saavedra A, editors. Naturaleza y Sociedad en el Área Maya, Pasado, Presente y Futuro. México (DF): Academia Mexicana de Ciencias y Centro de Investigación Científica de Yucatán; p. 53–68.
  • Cartus O, Kellndorfer J, Walker W, Franco C, Bishop J, Santos L, Fuentes J. 2014. A national, detailed map of forest aboveground carbon stocks in Mexico. Remote Sens. 6(6):5559–5588.
  • Castillo-Santiago MA, Ricker M, de Jong BH. 2010. Estimation of tropical forest structure from SPOT-5 satellite images. Int J Remote Sens. 31(10):2767–2782.
  • Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R. 2004. Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc Lond B Biol Sci. 359(1443):409–420.
  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, et al. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia. 145(1):87–99.
  • Chazdon RL, Broadbent EN, Rozendaal DMA, Bongers F, Zambrano AMA, Aide TM, Balvanera P, Becknell JM, Boukili V, Brancalion PHS, et al. 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci Adv. 2(5):e1501639.
  • Clark DB, Kellner JR. 2012. Tropical forest biomass estimation and the fallacy of misplaced concreteness. J Veg Sci. 23(6):1191–1196.
  • Comisión Nacional de Áreas Protegidas (CONANP). 2017. Áreas Naturales Protegidas Federales de la República Mexicana. Shapefile. México CONANP.
  • Comisión Nacional Forestal (CONAFOR). 2013. Inventario Nacional Forestal y de Suelos, Procedimientos de muestreo, CONAFOR, México.
  • Comisión Nacional Forestal (CONAFOR). 2015. Áreas de importancia para la producción, restauración y conservación Shapefile. CONAFOR México.
  • Cook B, Corp L, Nelson R, Middleton E, Morton D, McCorkel J, Masek J, Ranson K, Ly V, Montesano P. 2013. NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens. 5(8):4045–4066.
  • Dubayah R, Blair JB, Goetz S, Fatoyinbo L, Hansen M, Healey S, Hofton M, Hurtt G, Kellner J, Luthcke S, et al. 2020. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth's forests and topography. Sci Remote Sens. 1:100002.
  • Dupuy JM, Durán García R, García Contreras G, Arellano Morin J, Acosta Lugo E, Méndez González ME, Andrade Hernandez M. 2015. Chapter 8: Conservation and use. Introduction. In: Islebe, GA, Schmook B, Calmé S, León-Cortés JL, editors. Biodiversity and conservation of the Yucatán Peninsula. Cham (Switzerland): Springer; p. 1–5.
  • Dupuy JM, Hernández-Stefanoni JL, Hernández-Juárez RA, Tetetla-Rangel E, López-Martínez JO, Leyequién-Abarca E, Tun-Dzul FJ, May-Pat F. 2012. Patterns and correlates of tropical dry forest structure and composition in a highly replicated chronosequence in Yucatan, Mexico. Biotropica. 44(2):151–162.
  • Ellis EA, Montero JAR, Gómez IUH, Porter-Bolland L, Ellis PW. 2017. Private property and Mennonites are major drivers of forest cover loss in central Yucatan Peninsula, Mexico. Land Use Policy. 69:474–484.
  • Gallardo-Cruz JA, Meave JA, González EJ, Lebrija-Trejos EE, Romero-Romero MA, Pérez-García EA, Gallardo-Cruz R, Hernández-Stefanoni JL, Martorell C. 2012. Predicting tropical dry forest successional attributes from space: is the key hidden in image texture? PLoS One. 7(2):e30506.
  • Goetz SJ, Hansen M, Houghton RA, Walker W, Laporte N, Busch J. 2015. Measurement and monitoring needs, capabilities and potential for addressing reduced emissions from deforestation and forest degradation under REDD+. Environ. Res. Lett. 10(12):123001.
  • Gonzalez P, Asner GP, Battles JJ, Lefsky MA, Waring KM, Palace M. 2010. Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California. Remote Sens Environ. 114(7):1561–1575.
  • Haralick RM. 1979. Statistical and structural approaches to texture. Proc IEEE. 67(5):786–804.
  • Hernandez-Stefanoni JL, Castillo-Santiago MÁ, Mas JF, Wheeler CE, Andres-Mauricio J, Tun-Dzul F, George-Chacón SP, Reyes-Palomeque G, Castellanos-Basto B, Vaca R, et al. 2020. Improving AGB maps of tropical dry forests by integrating LiDAR, ALOS PALSAR, climate and field data. Carbon Balance Manag. 15(1):15–17.
  • Hernández-Stefanoni JL, Reyes-Palomeque G, Castillo-Santiago M, George-Chacón S, Huechacona-Ruiz A, Tun-Dzul F, Rondon-Rivera D, Dupuy JM. 2018. Effects of sample plot size and gps location errors on AGB estimates from LiDAR in tropical dry forests. Remote Sens. 10(10):1586.
  • Hooker G, Mentch L. 2018. Bootstrap bias corrections for ensemble methods. Stat Comput. 28(1):77–86.
  • Houghton RA. 2005. Aboveground forest biomass and the global carbon balance. Global Change biology, 11(6):945–958.
  • Houghton RA. 2012. Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Curr Opin Environ Sustain. 4(6):597–603.
  • Houghton RA. 2013. The emissions of carbon from deforestation and degradation in the tropics: past trends and future potential. Carbon Manage. 4(5):539–546.
  • Joshi N, Mitchard ETA, Brolly M, Schumacher J, Fernández-Landa A, Johannsen VK, Marchamalo M, Fensholt R. 2017. Understanding ‘saturation’ of radar signals over forests. Sci Rep. 7(1):1–11.
  • Jucker T, Asner GP, Dalponte M, Brodrick P, Philipson CD, Vaughn N, Brelsford C, Burslem DFRP, Deere NJ, Ewers RM, et al. 2017. A regional model for estimating the aboveground carbon density of Borneo’s tropical forests from airborne laser scanning. arXiv:1705.09242 [q-bio].
  • Lee JS. 1980. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell. 2(2):165–186.
  • Lewis SL, Wheeler CE, Mitchard ETA, Koch A. 2019. Restoring natural forests is the best way to remove atmospheric carbon. Nature. 568(7750):25–28.
  • Lu D. 2006. The potential and challenge of remote sensing-based biomass estimation. Int J Remote Sens. 27(7):1297–1328.
  • Luther JE, Fournier RA, van Lier OR, Bujold M. 2019. Extending ALS-based mapping of forest attributes with medium resolution satellite and environmental data. Remote Sens. 11(9):1092.
  • Mascaro J, Asner GP, Knapp DE, Kennedy-Bowdoin T, Martin RE, Anderson C, Higgins M, Chadwick KD. 2014. A tale of two “forests”: random forest machine learning aids tropical forest carbon mapping. PLoS One. 9(1):e85993.
  • Mascaro J, Detto M, Asner G, Muller-Landau HC. 2011. Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens Environ. 115 (12):3770–3774.
  • McGaughey RJ. 2012. FUSION/LDV: software for LIDAR data analysis and visualization. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station; p. 154; [accessed 2019 Dec 11]. http://forsys.cfr.washington.edu/fusion/fusion_overview.html.
  • McNicol IM, Ryan CM, Mitchard ETA. 2018. Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. Nat Commun. 9(1):1–11.
  • Mermoz S, Réjou-Méchain M, Villard L, Le Toan T, Rossi V, Gourlet-Fleury S. 2015. Decrease of L-band SAR backscatter with biomass of dense forests. Remote Sens Environ. 159:307–317.
  • Mitchard ETA. 2018. The tropical forest carbon cycle and climate change. Nature. 559(7715):527–534.
  • Mitchard ET, Saatchi SS, Baccini A, Asner GP, Goetz SJ, Harris NL, Brown S. 2013. Uncertainty in the spatial distribution of aboveground forest biomass: a comparison of pan tropical methods. Carbon Balance Manage. 8(1):1–13.
  • Mitchard ETA, Saatchi SS, Woodhouse IH, Feldpausch TR, Lewis SL, Sonke B, Rowland C, Meir P. 2011. Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter. Remote Sens Environ. 115(11):2861–2873.
  • Murphy PG, Lugo AE. 1986. Ecology of tropical dry forest. Annu Rev Ecol Syst. 17(1):67–88.
  • Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OA, Shvidenko A, Lewis SL, Canadell JG, et al. 2011. A large and persistent carbon sink in the world's forests. Science. 333(6045):988–993.
  • Pandit S, Tsuyuki S, Dube T. 2020. Exploring the inclusion of Sentinel-2 MSI texture metrics in above-ground biomass estimation in the community forest of Nepal. Geocarto Int. 35(16):1832–1849.
  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 2011. Scikit-learn: machine learning in Python. J Mach Learn Res. 12:2825–2830.
  • Ploton P, Mortier F, Réjou-Méchain M, Barbier N, Picard N, Rossi V, Dormann C, Guillaume C, Viennois G, Bayol N, et al. 2020. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat Commun. 11(1):1–11.
  • Qi W, Dubayah RO. 2016. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping. Remote Sens Environ. 187:253–266.
  • Ramírez GR, Dupuy Rada JM, Ramírez y Avilés L, Solorio Sánchez FJ. 2017. Evaluación de ecuaciones alométricas de biomasa epigea en una selva mediana subcaducifolia de Yucatán. MYB. 23(2):163–179.
  • Réjou-Méchain M, Barbier N, Couteron P, Ploton P, Grégoire V, Herold M, Mermoz Stéphane Saatchi A, Chave J, de Boissieu F, Féret JB, et al. 2019. Upscaling forest biomass from field to satellite measurements: sources of errors and ways to reduce them. Surv Geophys, 40(4):881–911.
  • Roberts DR, Bahn V, Ciuti S, Boyce MS, Elith J, Guillera-Arroita G, Hauenstein S, Lahoz-Monfort JJ, Schröder B, Thuiller W, et al. 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 40(8):913–929.
  • Rodríguez-Veiga P, Quegan S, Carreiras J, Persson HJ, Fransson JES, Hoscilo A, Ziółkowski D, Stereńczak K, Lohberger S, Stängel M, et al. 2019. Forest biomass retrieval approaches from earth observation in different biomes. Int J Appl Earth Obs Geoinf. 77:53–68.
  • Rodríguez-Veiga P, Saatchi S, Tansey K, Balzter H. 2016. Magnitude, spatial distribution and uncertainty of forest biomass stocks in Mexico. Remote Sens Environ. 183:265–281.
  • Roussel J-R, Caspersen J, Béland M, Thomas S, Achim A. 2017. Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sens Environ. 198:1–16.
  • Rzedowski J. 2006. Vegetación de México. 1ra. edición digital. México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; 504 p.
  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, et al. 2011. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci U S A. 108(24):9899–9904. doi:10.1073/pnas.1019576108.21628575
  • Sanaphre-Villanueva L, Dupuy JM, Andrade JL, Reyes-García C, Paz H, Jackson PC. 2016. Functional diversity of small and large trees along secondary succession in a tropical dry forest. Forests. 7(12):163.
  • Santoro M, 2018. data from GlobBiomass. global data set of forest biomass [datasets]. PANGAEA. [accessed 2021 Sep 14]; https://doi.org/10.1594/PANGAEA.894711.
  • Shimada M, Ohtaki T. 2010. Generating large-scale high-quality sar mosaic datasets: application to PALSAR data for global monitoring. IEEE J Sel Top Appl Earth Observ Remote Sens. 3(4):637–656.
  • Strobl C, Boulesteix A-L, Zeileis A, Hothorn T. 2007. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 8:25.
  • Thapa RB, Watanabe M, Motohka T, Shimada M. 2015. Potential of high-resolution ALOS PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sens Environ. 160:122–133.
  • Urbazaev M, Thiel C, Cremer F, Dubayah R, Migliavacca M, Reichstein M, Schmullius C. 2018. Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico. Carbon Balance Manag. 13(1):5.
  • Vafaei S, Soosani J, Adeli K, Fadaei H, Naghavi H, Pham TD, Tien Bui D. 2018. Improving accuracy estimation of forest AGB based on incorporation of ALOS PALSAR-and Sentinel-2A imagery and machine learning: a case study of the Hyrcanian forest area (Iran). Remote Sens. 10(2):172.
  • van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, Gouillart E, Yu T, the Scikit-Image Contributors. 2014. scikit-image: image processing in Python. PeerJ. 2:e453.
  • Williams M, Hill TC, Ryan CM. 2013. Using biomass distributions to determine probability and intensity of tropical forest disturbance. Plant Ecol Divers. 6(1):87–99.
  • Wood EM, Pidgeon AM, Radeloff VC, Keuler NS. 2012. Image texture as a remotely sensed measure of vegetation structure. Remote Sens Environ. 121:516–526.
  • Woodhouse IH. 2017. Introduction to microwave remote sensing. CRC Press. https://www.taylorfrancis.com/books/9781315272573.
  • Wulder MA, White JC, Nelson RF, Naesset E, Ørka HO, Coops NC, Hilker T, Bater CW, Gobakken T. 2012. Lidar sampling for large-area forest characterization: a review. Remote Sens Environ. 121:196–209.
  • Xu L, Saatchi SS, Yang Y, Yu Y, White L. 2016. Performance of non-parametric algorithms for spatial mapping of tropical forest structure. Carbon Balance Manag. 11(1):18.
  • Yanai RD, Wayson C, Lee D, Espejo AB, Campbell JL, Green MB, Zukswert JM, Yoffe SB, Aukema JE, Lister AJ, et al. 2020. Improving uncertainty in forest carbon accounting for REDD + mitigation efforts. Environ Res Lett. 15(12):124002.
  • Zhao Y, Chen X, Smallman TL, Flack-Prain S, Milodowski DT, Williams M. 2020. Characterizing the error and bias of remotely sensed LAI products: An example for tropical and subtropical evergreen forests in South China. Remote Sens. 12(19):3122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.