454
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

A distributed scatterers InSAR method based on adaptive window with statistically homogeneous pixel selection for mining subsidence monitoring

, , , &
Pages 7819-7842 | Received 14 Jun 2021, Accepted 17 Sep 2021, Published online: 04 Oct 2021

References

  • Bao J, Luo X, Liu G, Chang L, Wang X, Shi Y, Wu S. 2021. An improved distributed scatterers extraction algorithm for monitoring tattered ground surface subsidence with DSInSAR: a case study of loess landform in Tongren county. Int J Appl Earth Obs Geoinf. 99:102322.
  • Baumgartner W, WeiB P, Schindler H. 1998. A nonparametric test for the general two-sample problem. Int Biotremic Soc. 54 (3):1129–1135.
  • Berardino P, Fornaro G, Lanari R, Sansosti E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans Geosci Remote Sens. 40 (11):2375–2383.
  • Chi B, Zhuang H, Fan H, Yu Y, Peng L. 2021. An adaptive patch-based Goldstein filter for interferometric phase denoising. Int J Remote Sens. 42 (17):6746–6761.
  • Deng K, Tan Z, Jiang Y. 2014. Deformation monitoring and subsidence engineering. Xuzhou, China: China University of Mining and Technology Press.
  • Ding A, Tian B, Li K. 2013. Research of mining subsidence disaster monitoring. J Henan Polytech Univ Nat Sci. 32 (2):165–169.
  • Dong J, Zhang L, Tang M, Liao M, Xu Q, Gong J, Ao M. 2018. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sens Environ. 205:180–198.
  • Du Z, Ge L, Ng A, Li X. 2017. An innovative distributed scatterer based time-series InSAR method over underground mining region. In IGARSS IEEE International Geoscience and Remote Sensing Symposium.
  • Fan H, Gu W, Qin Y, Xue J, Chen B. 2014. A model for extracting large deformation mining subsidence using D-InSAR technique and probability integral method. Trans Nonferrous Met Soc China. 24 (4):1242–1247.
  • Fan H, Lu L, Yao Y. 2018. Method combining probability integration model and a small baseline subset for time series monitoring of mining subsidence. Remote Sens. 10 (9):1444–1461.
  • Fan H, Wang L, Wen B, Du S. 2021. A New model for three-dimensional deformation extraction with single-track InSAR based on mining subsidence characteristics. Int J Appl Earth Obs Geoinf. 94102223.
  • Ferretti A, Fumagalli A, Novali F, Prati C, Rocca F, Rucci A. 2011. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans Geosci Remote Sens. 49 (9):3460–3470.
  • Ferretti A, Prati C, Rocca P. 2001. Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens. 39 (1):8–20.
  • Gianfranco F, Simona V, Diego R, Antonio P. 2015. CAESAR: an approach based on covariance matrix decomposition to improve multibaseline–multitemporal interferometric SAR processing. IEEE Trans Geosci Remote Sens. 53 (4):2050–2065.
  • Goldstein RM, Werner C. 1998. Radar interferogram filtering for geophysical applications. Geophys Res Lett. 25 (21):4035–4038.
  • Hooper A, Segall P, Zebker H. 2007. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J Geophys Res. 112 (B7)
  • Jiang M, Andrea MG. 2020. Distributed scatterer interferometry with the refinement of spatiotemporal coherence. IEEE Trans Geosci Remote Sens. 58 (6):3977–3987.
  • Jiang M, Ding X, Li Z. 2018. Homogeneous pixel selection algorithm for multitemporal InSAR. Chin J Geophys. 61 (12):4767–4776.
  • Jiang M, Ding X, Ramon FH, Malhotra R, Chang L. 2015. Fast statistically homogeneous pixel selection for covariance matrix estimation for multitemporal InSAR. IEEE Trans Geosci Remote Sens. 53 (3):1213–1224.
  • Kanika G, Nico A. 2014. A Distributed scatterer interferometry approach for precision monitoring of known surface deformation phenomena. IEEE Trans Geosci Remote Sens. 52 (9):5454–5468.
  • Lee JS. 1983. Digital image smoothing and the sigma filter. Comput Vision Graph Image Process. 24 (2):255–269.
  • Li Z, Zou W, Ding X, Chen Y, Liu G. 2004. A quantitative measure for the quality of INSAR interferograms based on phase differences. Photogramm Eng Remote Sens. 70 (10):1131–1137.
  • Liu Y, Fan H, Wang L, Zhuang H. 2021. Monitoring of surface deformation in a low coherence area using distributed scatterers InSAR: case study in the Xiaolangdi Basin of the Yellow River, China. Bull Eng Geol Environ. 80 (1):25–39.
  • Nicolas JM, Tupin F, Maitre H. 2001. Smoothing speckled SAR images by using maximum homogeneous region filters: an improved approach. In IGARSS. Scanning the Present and Resolving the Future. Sydney, NSW, Australia.
  • Otsu N. 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst, Man, Cybern. 9 (1):62–66.
  • Papoulis A, Pillai SU. 2002. Probability, random variables and stochastic processes. New York, NY, USA: McGraw-Hill Europe.
  • Roghayeh S, Hossein N, Mahdi M, Andy H. 2018. Efficient ground surface displacement monitoring using sentinel-1 data: Integrating distributed scatterers (DS) identified using two-sample t-test with persistent scatterers (PS). Remote Sens. 10 (5):794.
  • Suo Z, Li Z, Bao Z. 2010. A new strategy to estimate local fringe frequencies for InSAR phase noise reduction. IEEE Geosci Remote Sens Lett. 7 (4):771–775.
  • Wang Y, Deng Y, Fei W, Wang R, Song H, Wang J, Li N. 2016. Modified statistically homogeneous pixels’ selection with multitemporal SAR images. IEEE Geosci Remote Sens Lett. 13 (12):1930–1934.
  • Wang Y, Xiao X, Bamler R. 2011. Optimal estimation of distributed scatterer phase history parameters from meter-resolution SAR data. In 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Vancouver, BC, Canada.
  • Yoon BJ, Vaidyanathan PP. 2004. A multirate DSP model for estimation of discrete probability density functions. IEEE Trans Signal Process. 53 (1):252–264.
  • Zhang B, Wang Y. 2021. An improved two-step multitemporal SAR interferometry method for precursory slope deformation detection over nanyu landslide. IEEE Geosci Remote Sens Lett. 18 (4):592–596.
  • Zhang B, Wang R, Deng Y, Ma P, Lin H, Wang J. 2019. Mapping the Yellow River Delta land subsidence with multitemporal SAR interferometry by exploiting both persistent and distributed scatterers. ISPRS J Photogramm Remote Sens. 148:157–173.
  • Zhao B, Li H, Guo G, Mi L. 2018. Study on high-precision regional monitoring method of high-grade highways subsidence under the influence of underground mining. Survey Rev. 50(359):174–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.