289
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An automated and optimized geo-computation approach for spatial fire risk modelling using geo-web service orchestration

ORCID Icon, , , &
Pages 7843-7854 | Received 02 Apr 2021, Accepted 23 Sep 2021, Published online: 06 Dec 2021

References

  • Babu KVS, Roy A, Prasad PR. 2016. Forest fire risk modeling in Uttarakhand Himalaya using TERRA satellite datasets. Eur J Remote Sens. 49(1):381–395.
  • Baldwin C, Ross H. 2019. Our warming climate and fire’s role in the Australian landscape. Australas J Environ Manage. 26(4):305–310.
  • Barmpoutis P, Papaioannou P, Dimitropoulos K, Grammalidis N. 2020. A review on early forest fire detection systems using optical remote sensing. Sensors (Switzerland). 20(22):6426–6442.
  • Chuvieco E, Mouillot F, van der Werf GR, San Miguel J, Tanase M, Koutsias N, García M, Yebra M, Padilla M, Gitas I, et al. 2019. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens Environ. 225:45–64.
  • Forest Department, Uttarakhand. 2015. Vision document and mandates of Information Technology and Geoinformatics Centre (ITGC). Uttarakhand, India: Forest Department.
  • Fu W, Ma J, Chen P, Chen F. 2020. Remote sensing satellites for digital earth BT – manual of digital earth. In: Guo H, Goodchild MF, Annoni A, editors. p. 55–123.
  • Giglio L, Descloitres J, Justice CO, Kaufman YJ. 2003. An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ. 87(2–3):273–282.
  • Giuliani G, Chatenoux B, Piller T, Moser F, Lacroix P. 2020. Data Cube on Demand (DCoD): generating an earth observation data cube anywhere in the world. Int J Appl Earth Obs Geoinform. 87:102035.
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27.
  • Gupta S, Roy A, Bhavsar D, Kala R, Singh S, Kumar AS. 2018. Forest fire burnt area assessment in the biodiversity rich regions using geospatial technology: Uttarakhand Forest Fire Event 2016. J Indian Soc Remote Sens. 46(6):945–955.
  • Hernandez-Leal PA, Arbelo M, Gonzalez-Calvo A. 2006. Fire risk assessment using satellite data. Adv Space Res. 37(4):741–746.
  • Jain A, Ravan SA, Singh RK, Das KK, Roy PS. 1996. Forest fire risk modelling using remote sensing and geographic information system. Curr Sci. 70(10):928–933.
  • Jha CS, Gopalakrishnan R, Thumaty KC, Singhal J, Reddy CS, Singh J, Pasha SV, Middinti S, Praveen M, Murugavel AR, Reddy S, et al. 2016. Monitoring of forest fires from space – ISRO’s initiative for near real-time monitoring of the recent forest fires in Uttarakhand, India. Curr Sci. 110(11):2057–2060.
  • Kandris D, Nakas C, Vomvas D, Koulouras G. 2020. Applications of wireless sensor networks: an up-to-date survey. ASI. 3(1):14–24.
  • Karnatak HC, Saran S, Bhatia K, Roy PS. 2007. Multicriteria spatial decision analysis in web GIS environment. Geoinformatica. 11(4):407–429.
  • Lidskog R, Johansson J, Sjödin D. 2019. Wildfires, responsibility and trust: public understanding of Sweden’s largest wildfire. Scand J Res. 34(4):319–328.
  • Lim CH, Kim YS, Won M, Kim SJ, Lee WK. 2019. Can satellite-based data substitute for surveyed data to predict the spatial probability of forest fire? A geostatistical approach to forest fire in the Republic of Korea. Geomat Nat Hazards Risk. 10(1):719–739.
  • Ljubomir G, Pamučar D, Drobnjak S, Pourghasemi HR. 2019. 15-modeling the spatial variability of forest fire susceptibility using geographical information systems and the analytical hierarchy process. In Pourghasemi HR, C. B. T.-S. M. in G. I. S. and R. for E. and Gokceoglu ES, editors.; p. 337–369.
  • Maffei C, Menenti M. 2014. An application of the Perpendicular Moisture Index for the prediction of fire hazard. EARSeL EProc. 13(1):13–19.
  • Moas A. 2020. 2020’s Global Wildfire Season is Here. [Washington D.C.(US)]: Greenpeace [accessed 2020 Dec 10]. https://www.greenpeace.org/usa/2020s-global-wildfire-season-is-here/.
  • Nativi S, Mazzetti P, Craglia M. 2017. A view-based model of data-cube to support big earth data systems interoperability. Big Earth Data. 1(1–2):75–99.
  • Park J, Yasuda Y, Sekine H. 2006. Forest and fields fire monitoring system using MODIS data. In Japan Society of Photogrammetry and Remote Sensing Annual Conference.
  • Sakellariou S, Samara F, Tampekis S, Sfougaris A, Christopoulou O. 2020. Development of a Spatial Decision Support System (SDSS) for the active forest–urban fires management through location planning of mobile fire units. Environ Hazards. 19(2):131–151.
  • Sannigrahi S, Pilla F, Basu B, Sarkar A, Sarkar K, Chakraborti S, Joshi PK, Zhang Q, Wang Y, Bhatt S, et al. 2020. Science of the total environment examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches. Sci Tot Environ. 725 (July):138331.
  • Satendra KA. 2014. Forest fire disaster management. New Delhi: National Institute of Disaster Management, Ministry of Home Affairs.
  • Sonti SH. 2015. Application of Geographic Information System (GIS) in Forest Management. J Geogr Nat Disast. 05(03).
  • Xiao-Rui T, Mcrae DJ, Li-Fu S, Ming-Yu W, Hong L. 2005. Satellite remote-sensing technologies used in forest fire management. J For Res. 16(1):73–78.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.