500
Views
34
CrossRef citations to date
0
Altmetric
Research Articles

Toward the development of deep learning analyses for snow avalanche releases in mountain regions

, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, , , , ORCID Icon & show all
Pages 7855-7880 | Received 12 Apr 2021, Accepted 23 Sep 2021, Published online: 22 Nov 2021

References

  • Akay H. 2021. Spatial modeling of snow avalanche susceptibility using hybrid and ensemble machine learning techniques. Catena. 206:105524.
  • Amin J, Sharif M, Yasmin M, Fernandes SL. 2018. Big data analysis for brain tumor detection: deep convolutional neural networks. Future Gener Comput Syst. 87:290–297.
  • Ancey C. 2009. Snow avalanches. In: Delage P, Schrefler B, editors. New York: Wiley & Sons.
  • Aydin A, Eker R. 2017. GIS-Based snow avalanche hazard mapping: Bayburt-Aşağı Dere catchment case. JEB. 38(5(SI)):937–943.
  • Babu SB, Suneetha A, Babu GC, Kumar YJN, Karuna G. 2018. Medical disease prediction using grey wolf optimization and auto encoder based recurrent neural network. PEN. 6(1):229–240.
  • Barbolini M, Pagliardi M, Ferro F, Corradeghini P. 2011. Avalanche hazard mapping over large undocumented areas. Nat Hazards. 56(2):451–464.
  • Barros AK, Carlos Príncipe J, Erdogmus D. 2007. Independent component analysis and blind source separation. Signal Process. 87(8):1817–1818.
  • Barros AK, Cichocki A. 2001. Extraction of specific signals with temporal structure. Neural Comput. 13(9):1995–2003.
  • Bebi P, Kulakowski D, Rixen C. 2009. Snow avalanche disturbances in forest ecosystems. State of research and implications for management. For Ecol Manag. 257(9):1883–1892.
  • Benedikt J. 2002. Risk assessment of avalanches. A fuzzy GIS application. Proc 5th Int FLINS Conf. 2002:395–402.
  • Beven K, Kirkby M. 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol Sci J. 24(1):43–69.
  • Bocchiola D, Medagliani M, Rosso R. 2006. Regional snow depth frequency curves for avalanche hazard mapping in central Italian Alps. Cold Reg Sci Technol. 46(3):204–221.
  • Bochinski E, Senst T, Sikora T. 2017. Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. In: 2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE; p. 3924–3928.
  • Bourova E, Maldonado E, Leroy JB, Alouani R, Eckert N, Bonnefoy-Demongeot M, Deschatres M. 2016. A new web-based system to improve the monitoring of snow avalanche hazard in France. Nat Hazards Earth Syst Sci. 16(5):1205–1216.
  • Bühler Y, Hüni A, Christen M, Meister R, Kellenberger T. 2009. Automated detection and mapping of avalanche deposits using airborne optical remote sensing data. Cold Reg Sci Technol. 57(2–3):99–106.
  • Butler DR, Walsh SJ. 1990. Lithologic, structural, and topographic influences on snow‐avalanche path location, Eastern Glacier National Park, Montana. Ann Assoc Am Geographers. 80(3):362–378.
  • Can R, Kocaman S, Gokceoglu C. 2019. A convolutional neural network architecture for auto-detection of landslide photographs to assess citizen science and volunteered geographic information data quality. IJGI. 8(7):300.
  • Canziani A, Paszke A, Culurciello E. 2016. An analysis of deep neural network models for practical applications. arXiv. preprint arXiv:1605. 07678 [cs.CV].
  • Cappabianca F, Barbolini M, Natale L. 2008. Snow avalanche risk assessment and mapping: a new method based on a combination of statistical analysis, avalanche dynamics simulation and empirically-based vulnerability relations integrated in a GIS platform. Cold Reg Sci Technol. 54(3):193–205.
  • Chen X, Chen W. 2021. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. Catena. 196:104833.
  • Chen W, Chen X, Peng J, Panahi M, Lee S. 2021. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front. 12(1):93–107.
  • Chen W, Chen Y, Tsangaratos P, Ilia I, Wang X. 2020. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sens. 12(23):3854.
  • Chen W, Hong H, Panahi M, Shahabi H, Wang Y, Shirzadi A, Pirasteh S, Alesheikh AA, Khosravi K, Panahi S, et al. 2019. Spatial prediction of landslide susceptibility using gis-based data mining techniques of ANFIS with whale optimization algorithm (WOA) and grey wolf optimizer (GWO). Appl Sci. 9(18):3755.
  • Chen Y, Jiang H, Li C, Jia X, Ghamisi P. 2016. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans Geosci Remote Sensing. 54(10):6232–6251.
  • Chen W, Li Y. 2020. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. Catena. 195:104777.
  • Chen W, Zhao X, Tsangaratos P, Shahabi H, Ilia I, Xue W, Wang X, Ahmad BB. 2020. Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J Hydrol. 583:124602.
  • Chlögl M, Matulla C. 2018. Potential future exposure of European land transport infrastructure to rainfall-inducedlandslides throughout the 21st century. Nat Hazards Earth Syst Sci. 18(4):1121–1132.
  • Choubin B, Borji M, Mosavi A, Sajedi-Hosseini F, Singh VP, Shamshirband S. 2019. Snow avalanche hazard prediction using machine learning methods. J Hydrol. 577:123929.
  • Christophe C, Georges R, Jérôme LS, Markus S, Pascal P. 2010. Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l'Oisans, France. Catena. 83(2–3):107–118.
  • Comon P. 1994. Independent component analysis. A new concept? Signal Process. 36(3):287–314.
  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J. 2015. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci Model Dev. 8(7):1991–2007.
  • Costa MH, Botta A, Cardille JA. 2003. Effects of large-scale changes in land cover on the discharge of the Tocantins River, Amazonia. J Hydrol. 283(1–4):206–217.
  • Decaulne A, Saemundsson T. 2006. Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology. 80(1–2):80–93.
  • Douglas-Smith D, Iwanaga T, Croke BFW, Jakeman AJ. 2020. Certain trends in uncertainty and sensitivity analysis: an overview of software tools and techniques. Environ Model Software. 124:104588.
  • Elfert S, Bormann H. 2010. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland “Hunte” catchment. J Hydrol. 383(3–4):245–255.
  • Falah F, Nejad S G, Rahmati O, Daneshfar M, Zeinivand H. 2016. Applicability of generalized additive model in groundwater potential modelling and comparison its performance by bivariate statistical methods. Geocarto Int. 31(1):1–21.
  • Fang Z, Wang Y, Peng L, Hong H. 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput Geosci. 139:104470.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn Lett. 27(8):861–874.
  • Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE, Meehl GA, Washington WM. 2005. The importance of land-cover change in simulating future climates. Science. 310(5754):1674–1678.
  • Fuchs S, Bründl M. 2005. Damage potential and losses resulting from snow avalanches in settlements of the Canton of Grisons, Switzerland. Nat Hazards. 34(1):53–69.
  • Gasparini NM, Tucker GE, Bras RL. 2004. Network‐scale dynamics of grain‐size sorting: implications for downstream fining, stream‐profile concavity, and drainage basin morphology. Earth Surf Process Landforms. 29(4):401–421.
  • Gebrehiwot A, Hashemi-Beni L, Thompson G, Kordjamshidi P, Langan TE. 2019. Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data. Sensors. 19(7):1486.
  • Ghimire B, Rogan J, Rodríguez-Galiano V, Panday P, Neeti N. 2012. An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA. GISci Remote Sens. 49(5):623–643.
  • Gleason J. 1994. Review-terrain parameters of avalanche starting zones and their effect on avalanche frequency. In International Snow Science Workshop, Snowbird, Utah.
  • Hu F, Xia GS, Hu J, Zhang L. 2015. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7(11):14680–14707.
  • Hyvrinen A. 2010. Independent component analysis. New York (NY): Wiley & Sons.
  • Jad SMM, Geravandi S, Mohammadi MJ, Alizadeh R, Sarvarian M, Rastegarimehr B, Afkar A, Yari AR, Momtazan M, Valipour A, et al. 2017. The relationship between knowledge of leadership and knowledge management practices in the food industry in Kurdistan province, Iran. Data Brief. 15:155–159.
  • Jamieson B, Stethem C. 2002. Snow avalanche hazards and management in Canada: challenges and progress. Natural Hazards. 26(1):35–53.
  • Ji S, Yu D, Shen C, Li W, Xu Q. 2020. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides. 17(6):1316–1337.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439.
  • Knudby A, LeDrew E, Brenning A. 2010. Predictive mapping of reef fish speciesrichness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sens Environ. 114(6):1230–1241.
  • Krizhevsky A, Sutskever I, Hinton GE. 2012. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Process Syst. 1:1097–1105. Available from: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neuralnetworks.pdf.
  • Kulakowski D, Rixen C, Bebi P. 2006. Changes in forest structure and in the relative importance of climatic stress as a result of suppression of avalanche disturbances. For Ecol Manage. 223(1–3):66–74.
  • Kumar S, Srivastava PK. 2018. Geospatial modelling and mapping of snow avalanche susceptibility. J Ind Soc Remote Sens. 46(1):109–119.
  • Kumar S, Srivastava PK, Snehmani. 2017. GIS-based MCDA–AHP modelling for avalanche susceptibility mapping of Nubra valley region, Indian Himalaya. Geocarto Int. 32(11):1254–1267.
  • Kumar S, Snehmani, Srivastava PK, Gore A, Singh MK. 2016. Fuzzy–frequency ratio model for avalanche susceptibility mapping. Int J Digit Earth. 9(12):1168–1184.
  • Laamrani A, Valeria O, Bergeron Y, Fenton N, Cheng LZ. 2015. Distinguishing and mapping permanent and reversible paludified landscapes in Canadian black spruce forests. Geoderma. 237–238:88–97.
  • Lecun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444.
  • Li Y, Martinis S, Wieland M. 2019. Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS J Photogramm Remote Sens. 152:178–191.
  • Li Q, Pham HA. 2017. A testing-coverage software reliability model considering fault removal efficiency and error generation. PloS One. 12(7):e0181524.
  • Lim MK, Tang S, Chan CS. 2014. iSurveillance: intelligent framework for multiple events detection in surveillance videos. Expert Syst Appl. 41(10):4704–4715.
  • Maggioni M. 2005. Avalanche release areas and their influence on uncertainty in avalanche hazard mapping [PhD thesis]. Universität Zürich; p. 146.
  • Mainieri R, Favillier A, Lopez-Saez J, Eckert N, Zgheib T, Morel P, Saulnier M, Peiry JL, Stoffel M, Corona C. 2020. Impacts of land-cover changes on snow avalanche activity in the French Alps. Anthropocene. 30:100244.
  • Mao D, Cherkauer KA. 2009. Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol. 374(1-2):71–82.
  • Marriott FHC. 1990. Adictionary of statistical terms, 5th ed. New York: Wiley.
  • Mason SJ, Graham NE. 2002. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation. Q J R Meteorol Soc. 128(584):2145–2166.
  • Maxion RA, Roberts RR. 2004. Proper use of ROC curves in intrusion/anomaly detection, technical report series CS-TR-871. Published by the University of Newcastle upon Tyne, School of Computing Science, Newcastle upon Tyne, UK; p. 32.
  • McClung D, Schaerer P. 2006. The avalanche handbook, 3rd ed. Seattle (WA): The Mountaineers Books.
  • Mirjalili S, Mirjalili SM, Lewis A. 2014. Grey wolf optimizer. Adv Eng Softw. 69:46–61.
  • Oh HJ, Kim YS, Choi JK, Park E, Lee S. 2011. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J Hydrol. 399(3–4):158–172.
  • Oquab M, Bottou L, Laptev I, Sivic J. 2014. Learning and transferring mid-level image representations using convolutional neural networks. In Conference on Computer Vision and Pattern Recognition (CVPR). Columbus (OH): IEEE; p. 1717–1724.
  • Parshad R, Kumar P, Srivastva PK. 2019. Seismically induced snow avalanches at Nubra–Shyok region of Western Himalaya, India. Natural Hazards. 99(2):843–855.
  • Peitzsch EH, Hendrikx J, Fagre DB. 2015. Terrain parameters of glide snow avalanches and a simple spatial glide snow avalanche model. Cold Reg Sci Technol. 120:237–250.
  • Pourali SH, Arrowsmith C, Chrisman N, Matkan AA, Mitchell D. 2016. Topography wetness index application in flood-risk-based land use planning. Appl Spatial Anal. 9(1):39–54.
  • Puntonet CG, Lang EW. 2006. Blind source separation and independent component analysis. Neurocomputing. 69(13–15):1413.
  • Rahmati O, Ghorbanzadeh O, Teimurian T, Mohammadi F, Tiefenbacher JP, Falah F, Pirasteh S, Ngo PTT, Bui DT. 2019. Spatial modeling of snow avalanche using machine learning models and geo-environmental factors: comparison of effectiveness in two mountain regions. Remote Sens. 11(24):2995.
  • Recknagel F, Bobbin J, Whigham P, Wilson H. 2000. Multivariate time-series modelling of algal blooms in freshwater lakes by machine learning. In: Vanrolleghem P, Lessard P, editors. Proceedings of the 5th International Symposium WATERMATEX’2000 on Systems Analysis and Computing in Water Quality Management. London: IWA Publishing.
  • Ren S, He K, Girshick R, Sun J. 2015. Faster R-CNN: towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst. 39(6):1137–1149.
  • Rixen C, Haag S, Kulakowski D, Bebi P. 2007. Natural disturbance modulates plant diversity and species composition in subalpine forest. J Vegetat Sci. 18(5):735–742.
  • Robinson S. 2014. Simulation: the practice of model development and use. 2nd ed. New York: Palgrave Macmillan.
  • Rogan J, Miller J, Stow D, Franklin J, Levien L, Fischer C. 2003. Land-cover change monitoring with classification trees using landsat TM and ancillary data. Photogramm Eng Remote Sens. 69(7):793–804.
  • Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, et al. 2015. ImageNet large scale visual recognition challenge. Int J Comput Vis. 115(3):211–252.
  • Sameen MI, Pradhan B, Lee S. 2020. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. Catena. 186:104249.
  • Schweizer J, Bruce JJ, Schneebeli M. 2003. Snow avalanche formation. Rev Geophys. 41(4):RG00012.
  • Sklar LS, Dietrich WE. 2004. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour Res. 40(6):WR002496.
  • Sørensen R, Zinko U, Seibert J. 2006. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol Earth Syst Sci. 10(1):101–112.
  • Stethem C, Jamieson B, Schaerer P, Liverman D, Germain D, Walker S. 2003. Snow avalanche hazard in Canada – a review. Natural Hazards. 28(2/3):487–515.
  • Suk P, Klimánek M. 2014. Creation of the snow avalanche susceptibility map of the Krkonoše Mountains using GIS. Acta Univ Agric Silvic Mendelianae Brun. 59(5):237–245.
  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. 9. Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition. Piscataway (NJ): IEEE; p. 1–9.
  • Thommeret N, Bailly JS, Puech C. 2010. Extraction of thalweg networks from DTM’s: application to badlands. Hydrol Earth Syst Sci. 14(8):1527–1536.
  • Tien Bui B, Shahabi H, Shirzadi A, Chapi K, Pradhan B, Chen W, Khosravi k, Panahi M, Ahmad B, Saro L. 2018. Land subsidence susceptibility mapping in South using machine learning algorithms. Sensors. 18(8):2464.
  • Tu J. 2009. Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J Hydrol. 379(3–4):268–283.
  • Veitinger J, Sovilla B, Purves RS. 2014. Influence of snow depth distribution on surface roughness in alpine terrain: a multi-scale approach. Cryosphere. 8(2):547–569.
  • Vijith H, Dodge-Wan D. 2018. Spatio-temporal changes in rate of soil loss and erosion vulnerability of selected region in the tropical forests of Borneoduring last three decades. Earth Sci Inform. 11(2):171–181.
  • Voiculescu M, Popescu F. 2011. Management of snow avalanche risk in the ski areas of the southern Carpathians-Romanian Carpathians. Case study: The Balea (fagaras Massif) and Sinaia (Bucegi Mountains) ski areas. In: Zhelezov G, editor. Sustainable development in mountain regions: southern Europe. Dordrecht: Springer Netherlands; p. 103–121.
  • Wang Y, Fang Z, Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ. 666:975–993.
  • Wang Y, Fang Z, Hong H, Peng L. 2020. Flood susceptibility mapping using convolutional neural network frameworks. J Hydrol. 582:124482.
  • Weimer D, Scholz-Reiter B, Shpitalni M. 2016. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection. CIRP Ann. 65(1):417–420.
  • Weiss A. 2001. Topographic positions and landforms analysis (conference poster). In ESRI International User Conference. San Diego, CA: The Nature Conservancy; p. 9–13.
  • Wever N, Vera Valero C, Fierz C. 2016. Assessing wet snow avalanche activity using detailed physics based snowpack simulations. Geophys Res Lett. 43(11):5732–5740.
  • Yariyan P, Avand M, Abbaspour RA, Karami M, Tiefenbacher JP. 2020. GIS-based spatial modeling of snow avalanches using four novel ensemble models. Sci Total Environ. 745:141008.
  • Yesilnacar EK. 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey [PhD Thesis]. Department of Geomatics, The University of Melbourne; p. 423.
  • Yndman RJ, Koehler AB. 2006. Another look at measures of forecast accuracy. Int J Forecast. 22(4):679–688.
  • Yousefi S, Pourghasemi HR, Emami SN, Pouyan S, Eskandari S, Tiefenbacher JP. 2020. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Sci Rep. 10(1):1–14.
  • Yu X, Hu D. 2014. Blind source separation: Theory and applications. Singapore: John Wiley & Sons.
  • Yu H, Ma Y, Wang L, Zhai Y, Wang X. 2017. A landslide intelligent detection method based on CNN and RSG_R. In 2017 IEEE International Conference on Mechatronics and Automation (ICMA). Takamatsu (Japan): IEEE; p. 40–44.
  • Zhang P. 2019. A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model. Appl Soft Comput. 85:105859.
  • Zhang E, Chen W, Zhang Z, Zhang Y. 2016. Local surface geometric feature for 3D human action recognition. J Neurocomput. 208(5):281–289.
  • Zhang C, Pan X, Li H, Gardiner A, Sargent I, Hare J, Atkinson PM. 2018. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J Photogramm Remote Sens. 140:133–144.
  • Zhao X, Chen W. 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sens. 12(14):2180.
  • Zhao G, Pang B, Xu Z, Peng D, Zuo D. 2020. Urban flood susceptibility assessment based on convolutional neural networks. J Hydrol. 590:125235.
  • Žvokelj M, Zupan S, Prebil I. 2016. EEMD-based multiscale ICA method for slewing bearing fault detection anddiagnosis. J Sound Vib. 370:394–423.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.