380
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Proposing novel ensemble approach of particle swarm optimized and machine learning algorithms for drought vulnerability mapping in Jharkhand, India

ORCID Icon, ORCID Icon, , , & ORCID Icon
Pages 8004-8035 | Received 15 Jul 2021, Accepted 30 Sep 2021, Published online: 18 Nov 2021

References

  • Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T. 2012. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agr Water Manage. 110:55–66.
  • Adede C, Oboko R, Wagacha P, Atzberger C. 2019. A mixed model approach to drought prediction using artificial neural networks: case of Kenya’s operational drought monitoring. Remote Sens. 11(9):1099. http://dx.doi.org/10.3390/rs11091099.
  • Ahmadi N, Akbarizadeh G. 2020. Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier. Neural Comput Appl. 32(7):2267–2281.
  • Aladaileh H, Al Qinna M, Karoly B, Al-Karablieh E, Rakonczai J. 2019. An investigation into the spatial and temporal variability of the meteorological drought in Jordan. Climate. 7(6):82.
  • Alsumaiei AA. 2020. Monitoring hydrometeorological droughts using a simplified precipitation index. Climate. 8(2):19.
  • Anderson D. 2018. Depression, dust bowl, demography, and drought: the colonial state and soil conservation in East Africa during the 1930s. In: Gregory M, editor. The Colonial Epoch in Africa. London: Routledge; p. 209–231.
  • Balaganesh G, Malhotra R, Sendhil R, Sirohi S, Maiti S, Ponnusamy K, Sharma AK. 2020. Development of composite vulnerability index and district level mapping of climate change induced drought in Tamil Nadu, India. Ecol Indic. 113:106197.
  • Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Shokri M, Mosavi A. 2020. Novel ensemble approach of Deep Learning Neural Network (DLNN) model and Particle Swarm Optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors. 20(19):5609.
  • Bangyal WH, Hameed A, Alosaimi W, Alyami H. 2021. A new initialization approach in particle swarm optimization for global optimization problems. Comput Intell Neurosci. 2021:1–17.
  • Borja K. 2020. Remittances, corruption, and human development in Latin America. St Comp Int Dev. 55(3):305–327.
  • Breiman L. 1996. Bagging predictors. Mach Learn. 24(2):123–140. http://dx.doi.org/10.1007/bf00058655.
  • Bui TD, Pham BT, Nguyen QP, Hoang ND. 2016. Spatial prediction of rainfall-induced shallow landslides using hybrid integration approach of Least-Squares Support Vector Machines and differential evolution optimization: a case study in Central Vietnam. Int J Digital Earth. 9(11):1077–1097.
  • Cavus Y, Aksoy H. 2019. Spatial drought characterization for Seyhan River basin in the Mediterranean region of Turkey. Water. 11(7):1331.
  • Chaudhari S, Pokhrel Y, Moran E, Miguez-Macho G. 2019. Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics. Hydrol Earth Syst Sci. 23(7):2841–2862.
  • Chen QF, Zou TX, Yang ZT, Chen HJ. 2020. Identification of patients with and without minimal hepatic encephalopathy based on gray matter volumetry using a support vector machine learning algorithm. Sci Rep. 10(1):1–8.
  • Chen W, Shahabi H, Shirzadi A, Li T, Guo C, Hong H, Li W, Pan D, Hui J, Ma M, et al. 2018. A novel ensemble approach of bivariate statistical-based logistic model tree classifier for landslide susceptibility assessment. Geocarto Int. 33(12):1398–1420.
  • Chuah CJ, Ho BH, Chow WT. 2018. Trans-boundary variations of urban drought vulnerability and its impact on water resource management in Singapore and Johor. Environ Res Lett. 13(7):074011.
  • Cooley SS, Williams CA, Fisher JB, Halverson GH, Perret J, Lee CM. 2019. Assessing regional drought impacts on vegetation and evapotranspiration: a case study in Guanacaste, Costa Rica. Ecol Appl. 29(2):e01834. http://dx.doi.org/10.1002/eap.1834.
  • Craig AR, Fisher WW. 2019. Randomization tests as alternative analysis methods for behavior‐analytic data. J Exp Anal Behav. 111(2):309–328.
  • Deng H, Yin Y, Han X. 2020. Vulnerability of vegetation activities to drought in Central Asia. Environ Res Lett. 15(8):084005.
  • Deng W, Yao R, Zhao H, Yang X, Li G. 2019. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput. 23(7):2445–2462.
  • Dennis JM, Shields BM, Henley WE, Jones AG, Hattersley AT. 2019. Disease progression and treatment response in data-driven subgroups of type 2 diabetes compared with models based on simple clinical features: an analysis using clinical trial data. Lancet Diabetes Endocrinol. 7(6):442–451.
  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D. 2020. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides. 17(8):1897–1914.
  • Diaz V, Perez GAC, Van Lanen HAJ, Solomatine D, Varouchakis EA. 2020. An approach to characterise spatiotemporal drought dynamics. Adv Water Resour. 137:103512.
  • Dikshit A, Pradhan B, Alamri AM. 2021a. Long lead time drought forecasting using lagged climate variables and a stacked long short-term memory model. Sci Total Environ. 755:142638.
  • Dikshit A, Pradhan B, Huete A. 2021b. An improved SPEI drought forecasting approach using the long short-term memory neural network. J Environ Manage. 283:111979.
  • Dikshit A, Pradhan B, Alamri AM. 2020. Short-term spatio-temporal drought forecasting using random forests model at New South Wales, Australia. Appl Sci. 10(12):4254. http://dx.doi.org/10.3390/app10124254.
  • Dobrovolski SG. 2015. World droughts and their time evolution: agricultural, meteorological, and hydrological aspects. Water Resour. 42(2):147–158.
  • dos Santos CAC, Mariano DA, das Chagas A, do Nascimento F, da C Dantas FR, de Oliveira G, Silva MT, da Silva LL, da Silva BB, Bezerra BG, et al. 2020. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense drought for drylands in Brazil. Int J Appl Earth Obs Geoinf. 85:101982.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658.
  • Dracup JA, Lee KS, Paulson EG. 1980. On the definition of droughts. Water Resour Res. 16(2):297–302. doi:10.1029/WR016i002p00297.
  • Ebi KL, Bowen K. 2016. Extreme events as sources of health vulnerability: drought as an example. Weather Clim Extremes. 11:95–102.
  • Edalat MM, Stephen H. 2019. Socio-economic drought assessment in Lake Mead, USA, based on a multivariate standardized water-scarcity index. Hydrol Sci J. 64(5):555–569.
  • Engström J, Jafarzadegan K, Moradkhani H. 2020. Drought vulnerability in the United States: an integrated assessment. Water. 12(9):2448. http://dx.doi.org/10.3390/w12092448.
  • Friedman M. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 32(200):675–701.
  • Gayen A, Pourghasemi HR. 2019. Spatial modeling of gully erosion: a new ensemble of CART and GLM data-mining algorithms. In: Hamid RP, Candan G, editor(s). Spatial modeling in GIS and R for earth and environmental sciences. Amsterdam, The Netherlands: Elsevier; p. 653–669.
  • Gayen A, Pourghasemi HR, Saha S, Keesstra S, Bai S. 2019. Gully erosion susceptibility assessment and management of hazard-prone areas in India using different machine learning algorithms. Sci Total Environ. 668:124–138.
  • Ghosh KG. 2019. Spatial and temporal appraisal of drought jeopardy over the Gangetic West Bengal, eastern India. Geoenviron Disasters. 6(1):1.
  • Guo H, Zheng Y, Wang B, Li Z. 2015. A Note on an Improved Self-Healing Group Key Distribution Scheme. Sensors (Basel). 15(10):25033–25038. doi:10.3390/s151025033.26426018
  • Guo Y, Huang S, Huang Q, Wang H, Wang L, Fang W. 2019. Copulas-based bivariate socioeconomic drought dynamic risk assessment in a changing environment. J Hydrol. 575:1052–1064.
  • He Q, Shahabi H, Shirzadi A, Li S, Chen W, Wang N, Chai H, Bian H, Ma J, Chen Y, et al. 2019. Landslide spatial modelling using novel bivariate statistical based Naïve Bayes, RBF Classifier, and RBF Network machine learning algorithms. Sci Total Environ. 663:1–15.
  • Heim Jr RR. 2002. A review of twentieth-century drought indices used in the United States. Bull Am Meteor Soc. 83(8):1149–1166. http://dx.doi.org/10.1175/1520-0477(2002)083%3c1149:arotdi%3e2.3.co;2.
  • Hoang ND, Bui DT. 2018. Spatial prediction of rainfall-induced shallow landslides using gene expression programming integrated with GIS: a case study in Vietnam. Nat Hazards. 92(3):1871–1887.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena 163:399–413.
  • Hong H, Liu J, Zhu AX. 2020. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci Total Environ. 718:137231.
  • Hong H, Tsangaratos P, Ilia I, Liu J, Zhu AX, Xu C. 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Sci Total Environ. 630:1044–1056.
  • Hong D, Hong KA. 2015. Drought forecasting using MLP neural networks. In: 2015 8th International Conference on u-and e-Service, Science and Technology (UNESST). IEEE. p. 62–65. http://dx.doi.org/10.1109/unesst.2015.23
  • Hoque MAA, Pradhan B, Ahmed N. 2020. Assessing drought vulnerability using geospatial techniques in north-western part of Bangladesh. Sci Total Environ. 705:135957.
  • Hoque MAA, Pradhan B, Ahmed N, Sohel MSI. 2021. Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Sci Total Environ. 756:143600.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. Catena. 165:520–529.
  • Jiang M, Liu J, Zhang L, Liu C. 2020. An improved stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Physica A. 541:122272.
  • Jiang W, Wang L, Feng L, Zhang M, Yao R. 2020. Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin. Int J Climatol. 40(7):3380–3397.
  • Kamruzzaman M, Jang MW, Cho J, Hwang S. 2019. Future changes in precipitation and drought characteristics over Bangladesh under CMIP5 climatological projections. Water. 11(11):2219.
  • Khan Z, Gul A, Perperoglou A, Miftahuddin M, Mahmoud O, Adler W, Lausen B. 2020. Ensemble of optimal trees, random forest and random projection ensemble classification. Adv Data Anal Classif. 14(1):97–116.
  • Khullar DR. 1999. India: a comprehensive geography. New Delhi: Kalyani Publishers.
  • Kong C, Xu K, Wang J, Wu C, Liu G. 2020. Landslide susceptibility assessment based on different machine-learning methods in Zhaoping County of eastern Guangxi. Nat Hazards Earth Syst Sci Disc. 1–41. doi:10.5194/nhess-2020-251
  • Krasnova TN, Samokhodskaya LM, Ivanitsky LV, Korogodina AD, Borisov EN, Nikiforova NV, Novikov PI, Kamalov AA, Mukhin NA. 2015. [Impact of interleukin-10 and interleukin-28 gene polymorphisms on the development and course of lupus nephritis]. Ter Arkh. 87(6):40–44. doi:10.17116/terarkh201587640-44.26281194
  • Kumar PS, Behera HS, Nayak J, Naik B. 2021. Bootstrap aggregation ensemble learning-based reliable approach for software defect prediction by using characterized code feature. Innov Syst Softw Eng. 1–25. doi:10.1007/s11334-021-00399-2
  • Kuwayama Y, Thompson A, Bernknopf R, Zaitchik B, Vail P. 2019. Estimating the impact of drought on agriculture using the US Drought Monitor. Am J Agric Econ. 101(1):193–210.
  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, et al. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag. 259(4):698–709.
  • Liu Y, Yang X, Na F, Ying W. 2012. Method of particle swarm optimization neural network on geological hazards comprehensive evaluation and its application. J Seismol Res Lett. 35(4):572–577.
  • Luque-Fernandez MA, Redondo-Sánchez D, Maringe C. 2019. cvauroc: command to compute cross-validated area under the curve for ROC analysis after predictive modeling for binary outcomes. Stata J. 19(3):615–625.
  • Mallick J, Talukdar S, Alsubih M, Ahmed M, Islam ARMT, Shahfahad TN. 2021. Proposing receiver operating characteristic-based sensitivity analysis with introducing swarm optimized ensemble learning algorithms for groundwater potentiality modelling in Asir region, Saudi Arabia. Geocarto Int. 1–28. doi:10.1080/10106049.2021.1878291
  • Mandal K, Saha S, Mandal S. 2021. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India. Geosci Front. 12(5):101203.
  • Marshall IJ, Noel‐Storr A, Kuiper J, Thomas J, Wallace BC. 2018. Machine learning for identifying randomized controlled trials: an evaluation and practitioner's guide. Res Synth Methods. 9(4):602–614.
  • McHugh ML. 2012. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 22(3):276–282.
  • McKee TB, Doesken NJ, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. Vol. 17(22). Anaheim CA: Amer. Meteor. Soc.; p. 179–184.
  • Meza I, Siebert S, Döll P, Kusche J, Herbert C, Eyshi Rezaei E, Nouri H, Gerdener H, Popat E, Frischen J, et al. 2020. Global-scale drought risk assessment for agricultural systems. Nat Hazards Earth Syst Sci. 20(2):695–712.
  • Mohammadi FG, Amini MH, Arabnia HR. 2020. Evolutionary computation, optimization, and learning algorithms for data science. In: Hadi Amini M, editor. Advances in intelligent systems and computing optimization, learning, and control for interdependent complex networks. Cham: Springer; p. 37–65.
  • Moslehi F, Haeri A. 2020. A novel hybrid wrapper–filter approach based on genetic algorithm, particle swarm optimization for feature subset selection. J Ambient Intell Human Comput. 11(3):1105–1127.
  • Mutti PR, de Abreu LP, de MB, Andrade L, Spyrides MHC, Lima KC, de Oliveira CP, Dubreuil V, Bezerra BG. 2020. A detailed framework for the characterization of rainfall climatology in semiarid watersheds. Theor Appl Climatol. 139(1–2):109–125.
  • Nabipour N, Dehghani M, Mosavi A, Shamshirband S. 2020. Short-term hydrological drought forecasting based on different nature-inspired optimization algorithms hybridized with artificial neural networks. IEEE Access. 8:15210–15222.
  • Park S, Kim J. 2019. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci. 9(5):942. http://dx.doi.org/10.3390/app9050942
  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Tran T-T-T, Bui DT. 2019. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches. Catena. 175:203–218.
  • Phong TV, Phan TT, Prakash I, Singh SK, Shirzadi A, Chapi K, Ly HB, Ho LS, Quoc NK, Pham BT. 2019. Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam. Geocarto Int. 36:1–24. doi:10.1080/10106049.2019.1665715
  • Pradhan C, Bhende CN. 2019. Online load frequency control in wind integrated power systems using modified Jaya optimization. Eng Appl Artif Intell. 77:212–228.
  • Razzaq M, Paulevé L, Siegel A, Saez-Rodriguez J, Bourdon J, Guziolowski C. 2018. Computational discovery of dynamic cell line specific Boolean networks from multiplex time-course data. PLoS Comput Biol. 14(10):e1006538.
  • Rodríguez JF, Saco PM, Sandi S, Saintilan N, Riccardi G. 2017. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat Commun. 8(1):1–12.
  • Roy J, Saha S. 2021. Integration of artificial intelligence with meta classifiers for the gully erosion susceptibility assessment in Hinglo river basin, Eastern India. Adv Space Res. 67(1):316–333. http://dx.doi.org/10.1016/j.asr.2020.10.013
  • Roy J, Saha S, Arabameri A, Blaschke T, Bui DT. 2019. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sens. 11(23):2866.
  • Rygel L, O’sullivan D, Yarnal B. 2006. A method for constructing a social vulnerability index: an application to hurricane storm surges in a developed country. Mitig Adapt Strat Glob Change. 11(3):741–764. http://dx.doi.org/10.1007/s11027-006-0265-6.
  • Saha A, Saha S. 2020. Comparing the efficiency of weight of evidence, support vector machine and their ensemble approaches in landslide susceptibility modelling: a study on Kurseong region of Darjeeling Himalaya, India. Remote Sens Appl Soc Environ. 19:100323.
  • Saha S, Gogoi P, Gayen A, Paul GC. 2021a. Constructing the machine learning techniques based spatial drought vulnerability index in Karnataka state of India. J Clean Prod. 314:128073. http://dx.doi.org/10.1016/j.jclepro.2021.128073.
  • Saha S, Kundu B, Paul GC, Mukherjee K, Pradhan B, Dikshit AA, Maulud KN, Alamri AM. 2021b. Spatial assessment of drought vulnerability using fuzzy-analytical hierarchical process: a case study at the Indian state of Odisha. Geomat Nat Hazards Risk. 12(1):123–153.
  • Saha S, Paul GC, Pradhan B, A, Maulud KN, Alamri AM. 2021c. Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India. Geomat Nat Hazards Risk. 12(1):29–62.
  • Saha S, Saha A, Hembram TK, Pradhan B, Alamri AM. 2020. Evaluating the performance of individual and novel ensemble of machine learning and statistical models for landslide susceptibility assessment at Rudraprayag District of Garhwal Himalaya. Appl Sci. 10(11):3772.
  • Sathishkumar VE, Park J, Cho Y. 2020. Seoul bike trip duration prediction using data mining techniques. IET Intel Transport Syst. 1. (11):1465–1474.
  • Siebert J, Sünnemann M, Auge H, Berger S, Cesarz S, Ciobanu M, Eisenhauer N. 2019. The effects of drought and nutrient addition on soil organisms vary across taxonomic groups, but are constant across seasons. Sci Rep. 9(1):1–12.
  • Singh TP, Nandimath P, Kumbhar V, Das S, Barne P. 2020. Drought risk assessment and prediction using artificial intelligence over the southern Maharashtra state of India. Model Earth Syst Environ. 7(3): 1–9.
  • Sridevi GD, Jyotishi A, Mahapatra S, Jagadeesh G, Bedamatta S. 2014. Climate change vulnerability in agriculture sector: indexing and mapping of four Southern Indian States. Quaderni - Working Paper DSE, No. 966. Bologna: Alma Mater Studiorum - Università di Bologna, Dipartimento di Scienze Economiche (DSE). http://dx.doi.org/10.6092/unibo/amsacta/4080.
  • Staal A, Tuinenburg OA, Bosmans JH, Holmgren M, van Nes EH, Scheffer M, Zemp DC, Dekker SC. 2018. Forest-rainfall cascades buffer against drought across the Amazon. Nat Clim Change. 8(6):539–543.
  • Tehrany MS, Pradhan B, Jebur MN. 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J Hydrol. 512:332–343.
  • Wang D, Zhang T, Li M, Bueno R, Jayender J. 2021. 3D deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation. Comput Med Imaging Graph. 88:101814.
  • Wilhite DA, Glantz MH. 1985. Understanding: the drought phenomenon: the role of definitions. Water Int. 10(3):111–120. http://dx.doi.org/10.1080/02508068508686328.
  • Wu J, Chen X, Yao H, Zhang D. 2021. Multi-timescale assessment of propagation thresholds from meteorological to hydrological drought. Sci Total Environ. 765:144232.
  • Xu H, Tian Z, He X, Wang J, Sun L, Fischer G, Fan D, Zhong H, Wu W, Pope E, et al. 2019. Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agr Water Manage. 213:594–604.
  • Yang M, Mou Y, Meng Y, Liu S, Peng C, Zhou X. 2020. Modeling the effects of precipitation and temperature patterns on agricultural drought in China from 1949 to 2015. Sci Total Environ. 711:135139.
  • Yu L, Cao Y, Zhou C, Wang Y, Huo Z. 2019. Landslide susceptibility mapping combining information gain ratio and support vector machines: a case study from Wushan segment in the three gorges reservoir area, China. Appl Sci. 9(22):4756.
  • Zahraie B, Nasseri M, Nematizadeh F. 2017. Exploring spatiotemporal meteorological correlations for basin scale meteorological drought forecasting using data mining methods. Arab J Geosci. 10(19):1–5. http://dx.doi.org/10.1007/s12517-017-3211-x.
  • Zamani H, Bazrafshan O. 2020. Modeling monthly rainfall data using zero-adjusted models in the semi-arid, arid and extra-arid regions. Meteorol Atmos Phys. 132(2):239–253.
  • Zhang F, Chen Y, Zhang J, Guo E, Wang R, Li D. 2019. Dynamic drought risk assessment for maize based on crop simulation model and multi-source drought indices. J Clean Prod. 233:100–114.
  • Zhang G, Wang M, Liu K. 2019. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. Int J Disaster Risk Sci. 10(3):386–403.
  • Zhang W, Wu C, Zhong H, Li Y, Wang L. 2021. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front. 12(1):469–477.
  • Zhang Y, Liu X, Bao F, Chi J, Zhang C, Liu P. 2020. Particle swarm optimization with adaptive learning strategy. Knowl-Based Syst. 196:105789.
  • Zhu S, Heddam S. 2020. Prediction of dissolved oxygen in urban rivers at the Three Gorges Reservoir, China: extreme learning machines (ELM) versus artificial neural network (ANN). Water Qual Res J. 55(1):106–118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.