1,108
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

COVID-19 slowdown induced improvement in air quality in India: rapid assessment using Sentinel-5P TROPOMI data

, , , , , , , , , , , , , , & show all
Pages 8127-8147 | Received 20 Jun 2021, Accepted 09 Oct 2021, Published online: 28 Oct 2021

References

  • Arif M, Kumar R, Kumar R, Zusman E, Singh RP, Gupta A. 2018. Assessment of indoor & outdoor black carbon emissions in rural areas of Indo-Gangetic Plain: seasonal characteristics, source apportionment and radiative forcing. Atmos Environ. 191:227–240.
  • Badarinath K, Kharol SK, Prasad VK, Sharma AR, Reddi E, Kambezidis H, Kaskaoutis D. 2008. Influence of natural and anthropogenic activities on UV Index variations–a study over tropical urban region using ground based observations and satellite data. J Atmos Chem. 59(3):219–236.
  • Beirle S, Platt U, Wenig M, Wagner T. 2003. Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources. Atmos Chem Phys. 3(6):2225–2232.
  • Biswal A, Singh T, Singh V, Ravindra K, Mor S. 2020. COVID-19 lockdown and its impact on tropospheric NO2 concentrations over India using satellite-based data. Heliyon. 6(9):e04764.
  • Bray CD, Nahas A, Battye WH, Aneja VP. 2021. Impact of lockdown during the COVID-19 outbreak on multi-scale air quality. Atmos Environ (1994). 254:118386.
  • Chandra N, Venkataramani S, Lal S, Sheel V, Pozzer A. 2016. Effects of convection and long-range transport on the distribution of carbon monoxide in the troposphere over India. Atmospheric Pollut Res. 7(5):775–785.
  • Chauhan A, Singh RP. 2020. Effect of lockdown on HCHO and trace gases over India during. Aerosol Air Qual Res. 21(4).
  • Das P, Mudi S, Behera MD, Barik SK, Mishra DR, Roy PS. 2021. Automated mapping for long-term analysis of shifting cultivation in Northeast India. Remote Sens. 13(6):1066.
  • Dutheil F, Baker JS, Navel V. 2020. COVID-19 as a factor influencing air pollution? Environ Pollut. 263(Pt A):114466.
  • Dutta C, Chatterjee A, Jana T, Mukherjee A, Sen S. 2010. Contribution from the primary and secondary sources to the atmospheric formaldehyde in Kolkata, India. Sci Total Environ. 408(20):4744–4748.
  • Dutta V, Kumar S, Dubey D. 2021. Recent advances in satellite mapping of global air quality: evidences during COVID-19 pandemic. Environ Sustain. 4(3):1–19.
  • Fu T-M, Jacob DJ, Palmer PI, Chance K, Wang YX, Barletta B, Blake DR, Stanton JC, Pilling MJ. 2007. Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone. J Geophys Res Atmospheres. 112(D6). DOI:10.1029/2006JD007853
  • Garg A, Kankal B, Shukla P. 2011. Methane emissions in India: sub-regional and sectoral trends. Atmos Environ. 45(28):4922–4929.
  • Gaur A, Tripathi S, Kanawade V, Tare V, Shukla S. 2014. Four-year measurements of trace gases (SO2, NOx, CO, and O3) at an urban location, Kanpur, in northern India. J Atmos Chem. 71(4):283–301.
  • Geiger H, Kleffmann J, Wiesen P. 2002. Smog chamber studies on the influence of diesel exhaust on photosmog formation. Atmos Environ. 36(11):1737–1747.
  • Ghosh D, Sarkar U, De S. 2015. Analysis of ambient formaldehyde in the eastern region of India along Indo-Gangetic Plain. Environ Sci Pollut Res Int. 22(23):18718–18730.
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27.
  • Gupta K, Saha A. 2020. A study of annual and seasonal variations in tropospheric ozone (O3) concentrations over India.
  • Guttikunda SK, Nishadh K, Jawahar P. 2019. Air pollution knowledge assessments (APnA) for 20 Indian cities. Urban Clim. 27:124–141.
  • Hammer MS, Martin RV, van Donkelaar A, Buchard V, Torres O, Ridley DA, Spurr RJ. 2016. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects. Atmos Chem Phys. 16(4):2507–2523.
  • Heilig GK. 1994. The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Popul Environ. 16(2):109–137.
  • Hua J, Zhang Y, de Foy B, Mei X, Shang J, Feng C. 2021. Competing PM2.5 and NO2 holiday effects in the Beijing area vary locally due to differences in residential coal burning and traffic patterns. Sci Total Environ. 750:141575.
  • India P. 2011. Census of India 2011 provisional population totals.
  • Jain N, Bhatia A, Pathak H. 2014. Emission of air pollutants from crop residue burning in India. Aerosol Air Qual Res. 14(1):422–430.
  • Kashyap S. 1996. Agro-climatic regional planning in India. New Delhi: Concept Publishing Company; p. 340.
  • Kaskaoutis D, Kumar S, Sharma D, Singh RP, Kharol S, Sharma M, Singh AK, Singh S, Singh A, Singh D. 2014. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J Geophys Res Atmos. 119(9):5424–5444.
  • Kaufman YJ, Tanré D, Boucher O. 2002. A satellite view of aerosols in the climate system. Nature. 419(6903):215–223.
  • Kharol SK, McLinden CA, Sioris CE, Shephard MW, Fioletov V, Donkelaar A, van, Philip S, Martin RV. 2017. OMI satellite observations of decadal changes in ground-level sulfur dioxide over North America. Atmos Chem Phys. 17(9):5921–5929.
  • Khosa MK, Sidhu B, Benbi D. 2011. Methane emission from rice fields in relation to management of irrigation water. J Environ Biol. 32(2):169–172.
  • Kumari S, Hiloidhari M, Naik SN, Dahiya RP. 2019. Methane emission assessment from Indian livestock and its role in climate change using climate metrics. In: Climate change and agriculture. IntechOpen. DOI:10.5772/intechopen.81713
  • Kunchala RK, Singh BB, Krishna KR, Attada R, Seelanki V, Kumar KN. 2021. Assessment of spatiotemporal variability and rising trends of surface ozone over India.
  • Largiuni O, Giacomelli M, Piccardi G. 2002. Concentration of peroxides and formaldehyde in air and rain and gas-rain partitioning. J Atmospheric Chem. 41(1):1–20.
  • Li G, Zavala M, Lei W, Tsimpidi A, Karydis V, Pandis SN, Canagaratna M, Molina L. 2011. Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign. Atmos Chem Phys. 11(8):3789–3809.
  • Lorente A, Borsdorff T, Butz A, Hasekamp O, Aan de Brugh J, Schneider A, Wu L, Hase F, Kivi R, Wunch D, et al. 2021. Methane retrieved from TROPOMI: improvement of the data product and validation of the first 2 years of measurements. Atmos Meas Tech. 14(1):665–684.
  • Lu Z, Streets DG, de Foy B, Krotkov NA. 2013. Ozone Monitoring Instrument observations of interannual increases in SO2 emissions from Indian coal-fired power plants during 2005–2012. Environ Sci Technol. 47(24):13993–14000.
  • Mahajan AS, De Smedt I, Biswas MS, Ghude S, Fadnavis S, Roy C, van Roozendael M. 2015. Inter-annual variations in satellite observations of nitrogen dioxide and formaldehyde over India. Atmos Environ. 116:194–201.
  • Miller BG. 2015. Fossil fuel emissions control technologies: stationary heat and power systems. United Kingdom: Butterworth-Heinemann. DOI:10.1016/B978-0-12-801566-7.00005-1
  • Misra P, Takigawa M, Khatri P, Dhaka SK, Dimri AP, Yamaji K, Kajino M, Takeuchi W, Imasu R, Nitta K, et al. 2021. Nitrogen oxides concentration and emission change detection during COVID-19 restrictions in North India. Sci Rep. 11(1):1–11.
  • Naja M, Lal S. 2002. Surface ozone and precursor gases at Gadanki (13.5 N, 79.2 E), a tropical rural site in India. J Geophys Res Atmospheres. 107(D14):ACH-8.
  • Nandi I, Srivastava S, Yarragunta Y, Kumar R, Mitra D. 2020. Distribution of surface carbon monoxide over the Indian subcontinent: investigation of source contributions using WRF-Chem. Atmos Environ. 243:117838.
  • Narayanan S, Saha S. 2020. More reform than relief: Indian agriculture and the pandemic. Ind J Labour Econ. 63(S1):105–111.
  • Otmani A, Benchrif A, Tahri M, Bounakhla M, Chakir EM, El Bouch M, Krombi M. 2020. Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci Total Environ. 735:139541.
  • Pokhariyal S, Patel N, Rana R, Chauhan P. 2021. Environmental impact of lockdown amid COVID-19 over agricultural sites in Himalayan foothills. J Indian Soc Remote Sens. 49(7):1651–1659.
  • Rahaman S, Kumar P, Chen R, Meadows ME, Singh R. 2020. Remote sensing assessment of the impact of land use and land cover change on the environment of Barddhaman district, West Bengal, India. Front Environ Sci. 8. DOI:10.3389/fenvs.2020.00127
  • Rajpoot S, Saxena S, Sehgal S, Dubey S, Choudhary K, Gavli A, Verma A, Ray S. 2019. Jute crop production estimation in major states of India: a comparative study of last 6 years’ FASAL and DES estimates. Int Arch Photogramm Remote Sens Spat Inf Sci. XLII-3/W6:129–136.
  • Ramanathan V, Li F, Ramana M, Praveen P, Kim D, Corrigan C, Nguyen H, Stone EA, Schauer JJ, Carmichael G. 2007. Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res Atmospheres. 112(D22). DOI:10.1029/2006JD008124
  • Renuka K, Gadhavi H, Jayaraman A, Lal S, Naja M, Rao SB. 2014. Study of ozone and NO2 over Gadanki – a rural site in South India. J Atmos Chem. 71(2):95–112.
  • Sabetghadam S, Khoshsima M, Pierleoni A. 2020. Aerosol climatology and determination of different types over the semi-arid urban area of Tehran, Iran: application of multi-platform remote sensing satellite data. Atmospheric Pollut Res. 11(9):1625–1636.
  • Samal P, Rout C, Repalli S, Jambhulkar N. 2018. State-wise analysis of growth in production and profitability of rice in India. Indian J Econ Dev. 14(3):399–409.
  • Sanap S. 2021. Global and regional variations in aerosol loading during COVID-19 imposed lockdown. Atmos Environ (1994). 246:118132.
  • Sarmadi M, Kakhki S, Foroughi M, Abadi TSH, Nayyeri S, Moghadam VK, Ramezani M. 2020. Hospitalization period of COVID-19 for future plans in hospital. Br J Surg. 107:e427–e428.
  • Shamjad P, Tripathi S, Pathak R, Hallquist M, Arola A, Bergin M. 2015. Contribution of brown carbon to direct radiative forcing over the Indo-Gangetic Plain. Environ Sci Technol. 49(17):10474–10481.
  • Sharma S, Zhang M, Anshika, Gao J, Zhang H, Kota SH. 2020. Effect of restricted emissions during COVID-19 on air quality in India. Sci Total Environ. 728:138878.
  • Shrestha AM, Shrestha UB, Sharma R, Bhattarai S, Tran HNT, Rupakheti M. 2020. Lockdown caused by COVID-19 pandemic reduces air pollution in cities worldwide.
  • Singh R, Dey S, Tripathi S, Tare V, Holben B. 2004. Variability of aerosol parameters over Kanpur, northern India. J Geophys Res Atmospheres. 109(D23). DOI:10.1029/2004JD004966
  • Soni M, Verma S, Jethava H, Payra S, Lamsal L, Gupta P, Singh J. 2021. Impact of COVID-19 on the air quality over china and India using long-term (2009–2020) multi-satellite data. Aerosol Air Qual Res. 21. DOI:10.4209/aaqr.2020.06.0295
  • Su W, Liu C, Chan KL, Hu Q, Liu H, Ji X, Zhu Y, Liu T, Zhang C, Chen Y, et al. 2020. An improved TROPOMI tropospheric HCHO retrieval over China. Atmos Meas Tech. 13(11):6271–6292.
  • Tyagi B, Choudhury G, Vissa NK, Singh J, Tesche M. 2021. Changing air pollution scenario during COVID-19: redefining the hotspot regions over India. Environ Pollut. 271:116354.
  • Vîrghileanu M, Săvulescu I, Mihai B-A, Nistor C, Dobre R. 2020. Nitrogen dioxide (NO2) pollution monitoring with Sentinel-5P satellite imagery over Europe during the coronavirus pandemic outbreak. Remote Sens. 12(21):3575.
  • Wang P, Baines A, Lavine M, Smith G. 2012. Modelling ozone injury to US forests. Environ Ecol Stat. 19(4):461–472.
  • West JJ, Fiore AM. 2005. Management of tropospheric ozone by reducing methane emissions. Environ Sci Technol. 39(13):4685–4691.
  • Xiang Y, Zhang T, Liu J, Wan X, Loewen M, Chen X, Kang S, Fu Y, Lv L, Liu W, et al. 2021. Vertical profile of aerosols in the Himalayas revealed by lidar: new insights into their seasonal/diurnal patterns, sources, and transport. Environ Pollut. 285:117686.
  • Yarragunta Y, Srivastava S, Mitra D. 2017. Validation of lower tropospheric carbon monoxide inferred from MOZART model simulation over India. Atmospheric Res. 184:35–47.
  • Zhang Z, Arshad A, Zhang C, Hussain S, Li W. 2020. Unprecedented temporary reduction in global air pollution associated with COVID-19 forced confinement: a continental and city scale analysis. Remote Sens. 12(15):2420.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.