1,037
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Consideration of spatial heterogeneity in landslide susceptibility mapping using geographical random forest model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8190-8213 | Received 23 May 2021, Accepted 15 Oct 2021, Published online: 25 Nov 2021

References

  • Adnan MSG, Rahman MS, Ahmed N, Ahmed B, Rabbi MF, Rahman RM. 2020. Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sens. 12(20):3347.
  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA. 2021. GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci. Front. 12(2):857–876.
  • Barančoková M, Kenderessy P. 2014. Assessment of landslide risk using GIS and statistical methods in Kysuce region. Ekológia (Bratislava). 33(1):26–35.
  • Barella CF, Sobreira FG, Zêzere JL. 2019. A comparative analysis of statistical landslide susceptibility mapping in the southeast region of Minas Gerais state, Brazil. Bull Eng Geol Environ. 78(5):3205–3221.
  • Bochníček O, Borsányi P, Čepčeková E, Faško P, Chmelík M, Jančovičová Ľ, Kapolková H, Labudová L, Mikulová K, Mišaga O. 2015. Climate atlas of Slovakia. Bratislava: Slovak Hydrometeorological Institute.
  • Breiman L. 2001. Random forests. Mach. Learn. 45(1):5–32.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards : a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378. http://dx.doi.org/10.1007/s10346-015-0557-6.
  • Büttner G. 2014. CORINE land cover and land cover change products. In: Manakos I, Braun M, editors. Land use and land cover mapping in Europe remote sensing and digital image processing. Vol. 18. 18th ed. Dordrecht: Springer; p. 55–74.
  • Carrión-Mero P, Montalván-Burbano N, Morante-Carballo F, Quesada-Román A, Apolo-Masache B. 2021. Worldwide Research Trends in Landslide Science. Int J Environ Res Public Health. 18(18):1–24.
  • Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 13(11):2815–2831. https://nhess.copernicus.org/articles/13/2815/2013/.
  • Chalkias C, Polykretis C, Karymbalis E, Soldati M, Ghinoi A, Ferentinou M. 2020. Exploring spatial non-stationarity in the relationships between landslide susceptibility and conditioning factors: a local modeling approach using geographically weighted regression. Bull Eng Geol Environ. 79(6):2799–2814. http://link.springer.com/10.1007/s10064-020-01733-x.
  • Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H. 2021. Xgboost: extreme gradient boosting. R package version 1321.
  • Chen W, Yan X, Zhao Z, Hong H, Bui DT, Pradhan B. 2019. Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive Bayes and RBFNetwork models for the Long County area (China). Bull Eng Geol Environ. 78(1):247–266. http://link.springer.com/10.1007/s10064-018-1256-z.
  • Crosetto M, Tarantola S, Saltelli A. 2000. Sensitivity and uncertainty analysis in spatial modelling based on GIS. Agric. Ecosyst. Environ. 81(1):71–79. https://linkinghub.elsevier.com/retrieve/pii/S0167880900001699.
  • de Oliveira GG, Ruiz LFC, Guasselli LA, Haetinger C. 2019. Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil. Nat Hazards. 99(2):1049–1073.
  • Dias Tardelli Uehara T, Paes Leme Passos Corrêa S, Pacheco Quevedo R, Sehn Körting T, Vieira Dutra L, Daleles Rennó C. 2020. Landslide scars detection using remote sensing and pattern recognition techniques: comparison among artificial neural networks, Gaussian maximum likelihood, random forest, and support vector machine classifiers. Rev Bras Cartogr. 72(4):665–680. http://www.seer.ufu.br/index.php/revistabrasileiracartografia/article/view/54037.
  • Du Z, Wang Z, Wu S, Zhang F, Liu R. 2020. Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity. Int. J. Geogr. Inform. Sci. 34(7):1353–1377. https://www.tandfonline.com/doi/abs/10.1080/13658816.2019.1707834.
  • Erener A, Düzgün HSB. 2010. Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides. 7(1):55–68.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recog Lett. 27(8):861–874. https://linkinghub.elsevier.com/retrieve/pii/S016786550500303X.
  • Feizizadeh B, Blaschke T. 2014. An uncertainty and sensitivity analysis approach for GIS-based multicriteria landslide susceptibility mapping. Int J Geogr Inf Sci. 28(3):610–638. http://www.tandfonline.com/doi/full/10.1080/13658816.2013.869821.
  • Feizizadeh B, Roodposhti MS, Blaschke T, Aryal J. 2017. Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping. Arab J Geosci. 10(5):122.
  • Feuillet T, Coquin J, Mercier D, Cossart E, Decaulne A, Jónsson HP, Saemundsson þ. 2014. Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: do paraglacial factors vary over space? Prog Phys Geogr. 38(3):354–377.
  • Florinsky IV. 2016. Topographic surface and its characterization. In: Digital terrain analysis in soil science and geology. Amsterdam: Elsevier; p. 7–76.
  • Fotheringham AS, Brunsdon C, Charlton M. 2002. Geographically weighted regression: The analysis of spatially varying relationships. Hoboken: Wiley.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann. Stat. 53(5):1189–1232.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181.
  • Georganos S, Grippa T, Niang Gadiaga A, Linard C, Lennert M, Vanhuysse S, Mboga N, Wolff E, Kalogirou S. 2021. Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 36(2):121–136.
  • Georganos S, Grippa T, Gadiaga A, Vanhuysse S, Kalogirou S, Lennert M, Linard C. 2019. An application of geographical random forests for population estimation in Dakar, Senegal using very-high-resolution satellite imagery. In: 2019 Joint Urban Remote Sensing Event (JURSE). IEEE; p. 1–4. https://ieeexplore.ieee.org/document/8809049/.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT. 2012. Landslide inventory maps: new tools for an old problem. Earth Sci Rev. 112(1–2):42–66.
  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology. 72(1–4):272–299.
  • Hengl T, Nussbaum M, Wright MN, Heuvelink GBM, Gräler B. 2018. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ. 2018(8):e5518.
  • Hong H, Pradhan B, Sameen MI, Chen W, Xu C. 2017. Spatial prediction of rotational landslide using geographically weighted regression, logistic regression, and support vector machine models in Xing Guo area (China). Geomatics Nat Hazards Risk. 8(2):1997–2022.
  • Huang F, Cao Z, Guo J, Jiang S-H, Li S, Guo Z. 2020. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA. 191(March):104580.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. Catena. 165(March):520–529.
  • Hussin HY, Zumpano V, Reichenbach P, Sterlacchini S, Micu M, van Westen C, Bălteanu D. 2016. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology. 253:508–523.
  • Kadavi PR, Lee CW, Lee S. 2019. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models. Environ Earth Sci. 78(4):0. http://dx.doi.org/10.1007/s12665-019-8119-1.
  • Kalogirou S, Georganos S. 2019. SpatialML: Spatial Machine Learning.
  • Kim JC, Lee S, Jung HS, Lee S. 2018. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 33(9):1000–1015.
  • Korup O, Stolle A. 2014. Landslide prediction from machine learning. Geol. Today. 30(1):26–33.
  • Krušić J, Marjanović M, Samardžić-Petrović M, Abolmasov B, Andrejev K, Miladinović A. 2017. Comparison of expert, deterministic and machine learning approach for landslide susceptibility assessment in Ljubovija Municipality, Serbia. Geofizika. 34(2):251–273. http://geofizika-journal.gfz.hr/vol_34/No2/34-2_Krusic_et_al.pdf.
  • Kumar D, Thakur M, Dubey CS, Shukla DP. 2017. Landslide susceptibility mapping & prediction using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology. 295(June):115–125.
  • Lapin M, Faško P, Melo M, Šťastný P, Tomlain J. 2002. Climatic regions. In: Hrnčiarová T, editor, Landscape of the Slovak Republic. Bratislava, Banská Bystrica: MŽP SR, SAŽP.
  • Li Y, Liu X, Han Z, Dou J. 2020. Spatial proximity-based geographically weighted regression model for landslide susceptibility assessment: a case study of Qingchuan area, China. Appl Sci (Switzerland). 10(3):1107.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, Pham BT, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev . 207(September 2019):103225.
  • Minár J, Barka I, Jakál J, Stankoviansky M, Trizna M, Urbánek J. 2006. Geomorphological hazards in Slovakia. Studia Geomorphologica Carpatho-Balcanica. 40:61–78.
  • Mokhtari M, Abedian S. 2019. Spatial prediction of landslide susceptibility in Taleghan basin, Iran. Stoch Environ Res Risk Assess. 33(7):1297–1325.
  • Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5(1):3–30. https://onlinelibrary.wiley.com/doi/full/10.1002/hyp.3360050103.
  • Nhu VH, Mohammadi A, Shahabi H, Ahmad BB, Al-Ansari N, Shirzadi A, Clague JJ, Jaafari A, Chen W, Nguyen H. 2020. Landslide susceptibility mapping using machine learning algorithms and remote sensing data in a tropical environment. IJERPH. 17(14):4933.
  • O’Brien RM. 2007. A caution regarding rules of thumb for variance inflation factors. Qual Quant. 41(5):673–690.
  • Park SJ, Lee CW, Lee S, Lee MJ. 2018. Landslide susceptibility mapping and comparison using decision tree models: a case study of Jumunjin Area, Korea. Remote Sens. 10(10):1545.
  • Petley D. 2012. Global patterns of loss of life from landslides. Geology. 40(10):927–930.
  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, et al. 2021. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat Nat Hazards Risk. 12(1):1741–1777.
  • Pham BT, Tien Bui D, Prakash I, Dholakia MB. 2016. Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using GIS. Nat Hazards. 83(1):97–127.
  • Qin CZ, Zhu AX, Pei T, Li BL, Scholten T, Behrens T, Zhou CH. 2011. An approach to computing topographic wetness index based on maximum downslope gradient. Precision Agric. 12(1):32–43. https://link.springer.com/article/10.1007/s11119-009-9152-y.
  • Quevedo RP, Guasselli LA, Oliveira GGD, Ruiz LFC. 2019. Modelagem de áreas suscetíveis a movimentos de massa_ avaliação comparativa de técnicas de amostragem, aprendizado de máquina e modelos digitais de elevação. Geociências UNESP. 38(3):781–795.
  • Quevedo RP, Oliveira GG, De Guasselli LA. 2020. Mapeamento de Suscetibilidade a Movimentos de Massa a partir de Redes Neurais Artificiais. Anu Inst Geociênc. 43:128–138.
  • R Core Team. 2014. R: A language and environment for statistical computing.
  • Rabby YW, Hossain MB, Abedin J. 2021. Landslide susceptibility mapping in three Upazilas of Rangamati hill district Bangladesh: application and comparison of GIS-based machine learning methods. Geocarto Int. 1–27. https://www.tandfonline.com/doi/abs/10.1080/10106049.2020.1864026.
  • Rahmati O, Kornejady A, Deo RC. 2021. Spatial prediction of landslide susceptibility using random forest algorithm. Singapore: Springer; p. 281–292. https://link.springer.com/chapter/10.1007/978-981-15-5772-9_15.
  • Rasyid AR, Bhandary NP, Yatabe R. 2016. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron Disasters. 3(1):19. http://dx.doi.org/10.1186/s40677-016-0053-x.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth Sci Rev. 180(November 2017):60–91.
  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S. 2010. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology. 114(3):129–142.
  • Sahin EK. 2020. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl Sci. 2(7):1308.
  • Shahri AA, Spross J, Johansson F, Larsson S. 2019. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. Catena. 183(August):104225.
  • Simekova J, Liscak P, Janova V, Martincekova T. 2014. Atlas of slope stability maps of the Slovak Republic at Scale 1 : 50,000 – its results and use in practice. Slovak Geol Mag. 14(1):19–30.
  • Šimeková J, Martinčeková T, Abrahám P, Gejdoš T, Grencíková A, Grman D, Hrašna M, Jadroň D, Záthurecký A, Kotrčková E, et al. 2006. Atlas of slope stability maps of the Slovak Republic (1: 50,000). Sro B, editor. Žilina: Publ. Ministry of the Environment of the Slovak Republic.
  • Skilodimou HD, Bathrellos GD, Koskeridou E, Soukis K, Rozos D. 2018. Physical and anthropogenic factors related to landslide activity in the northern Peloponnese, Greece. Land. 7(3):85.
  • Smith MD, Goodchild MF, Longley P. 2007. Geospatial analysis: a comprehensive guide to principles, techniques and software tools. Leicester: Troubador Publishing Ltd.
  • Sterlacchini S, Ballabio C, Blahut J, Masetti M, Sorichetta A. 2011. Spatial agreement of predicted patterns in landslide susceptibility maps. Geomorphology. 125(1):51–61.
  • Sun D, Wen H, Wang D, Xu J. 2020. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology. 362:107201.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using random forest. Big Earth Data. 2(2):159–178. https://www.tandfonline.com/doi/full/10.1080/20964471.2018.1472392.
  • Tsangaratos P, Ilia I. 2016. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi Perfection, Greece. Landslides. 13(2):305–320.
  • Uehara TDT, Corrêa SPLP, Quevedo RP, Körting TS, Dutra LV, Rennó CD. 2020. Landslide scars detection using remote sensing and pattern recognition techniques: Comparison among Artificial Neural Networks, Gaussian Maximum Likelihood, Random Forest, and Support Vector Machine Classifiers. Revista Brasileira de Cartografia. 72(4):665–680.
  • Vakhshoori V, Zare M. 2018. Is the ROC curve a reliable tool to compare the validity of landslide susceptibility maps? Geomatics Nat Hazards Risk. 9(1):249–266.
  • Vico G, Porporato A. 2009. Probabilistic description of topographic slope and aspect. J Geophys Res. 114(F1):F01011. http://doi.wiley.com/10.1029/2008JF001038.
  • Vojteková J, Vojtek M. 2019. GIS-based landscape stability analysis: A comparison of overlay method and fuzzy model for the case study in Slovakia. Prof Geogr. 71(4):631–644.
  • Vojteková J, Vojtek M. 2020. Assessment of landslide susceptibility at a local spatial scale applying the multi-criteria analysis and GIS: a case study from Slovakia. Geomat Nat Hazards Risk. 11(1):131–148.
  • Wang Y, Feng L, Li S, Ren F, Du Q. 2020. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena. 188(December 2019):104425.
  • Wilcoxon F. 1945. Individual comparisons by ranking methods. Biometrics Bull. 1(6):80.
  • Zhang T, Mao Z, Wang T. 2020. GIS-based evaluation of landslide susceptibility using a novel hybrid computational intelligence model on different mapping units. J Mt Sci. 17(12):2929–2941. http://link.springer.com/10.1007/s11629-020-6393-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.