299
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Revealing potential areas of water resources using integrated remote-sensing data and GIS-based analytical hierarchy process

&
Pages 8672-8696 | Received 23 Jul 2021, Accepted 07 Nov 2021, Published online: 25 Nov 2021

References

  • Abdalla F, Moubark K, Abdelkareem M. 2020. Groundwater potential mapping using GIS, linear weighted combination techniques and geochemical processes identification, west of the Qena. J Taibah University Sci. 14 (1):1350–1362.
  • Abdalla F. 2018. Water resources in Saudi deserts. Science and Technology Magazine. 121:18–22.
  • Abdalla F, Al-Turki A, Al Amri A. 2015. Evaluation of groundwater resources in the Southern Tihama Plain, Saudi Arabia. Arab J Geosci. 8(5):3299–3310.
  • Abdelkareem M, Al-Arifi N. 2021. The use of remotely sensed data to reveal geologic, structural, and hydrologic features and predict potential areas of water resources in arid regions. Arab J Geosci. 14(8):1–15.
  • Abdelkareem M, Abdalla F, Mohamed SY, El-Baz F. 2020a. Mapping paleohydrologic features in the arid areas of Saudi Arabia using remote-sensing data. Water. 12(2):417.
  • Abdelkareem M, Abdullah OB, Zakaria H, Gamal MK. 2020b. Multispectral and RADAR images integration for geologic, geomorphic, and structural investigation in southwestern Arabian Shield, Al Qunfudhah area, Saudi Arabia. J Taibah Univ Sci. 14:383–401.
  • Abdelkareem M, Gaber A, Abdalla F, Kamal E-DG. 2020c. Use of optical and radar remote sensing satellites for identifying and monitoring active/inactive landforms in the driest desert in Saudi Arabia. Geomorphology. 362:107197.
  • Abdelkareem M, El-Baz F. 2016. Mode of formation of the Nile Gorge in northern Egypt by DEM-SRTM data and GIS analysis. Geol J. 51(5):760–778.
  • Abdelkareem M, El-Baz F, Askalany M, Akawy A, Ghoneim E. 2012. Groundwater prospect map of Egypt's Qena Valley using data fusion. Inter J Image Data Fusion. 3(2):169–189. ‏
  • Abdelkareem M, El-Baz F. 2015. Analyses of optical images and radar data reveal structural features and predict groundwater accumulations in the central Eastern Desert of Egypt. Arab J Geosci. 8:2653–2666.
  • Abdelkareem M, El-Baz F. 2017. Remote sensing of paleodrainage systems west of the Nile River, Egypt. Geocarto Int. 32 (5):541–555.
  • Abdelkareem M. 2017. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat Hazards. 85:19–37.
  • Achu AL, Reghunath R, Thomas J. 2020. Mapping of groundwater recharge potential zones and identification of suitable site-specific recharge mechanisms in a tropical river basin. Earth Syst Environ. 4:131–145.
  • Al Kadhi AA. 1986. Structural and geomorphic evidence relevant to the Neotectonic history of Central Arabia. J. Coll Sci King Saud Univ.17(1):101–125.
  • AlAwad M. 2018. Artificial recharge (AR) of groundwater aquifers in Saudi Arabia. ICEWES 2018, Ras Al Khaimah-UAE, November 13–15, 2018.
  • Alfaifi HJ, Abdelfatah MS, Abdelrahman K, Zaidi FK, Ibrahim E, Alarifi NS. 2017. Groundwater management scenarios for the Biyadh-Wasia aquifer systems in the eastern part of Al Riyadh Region, Saudi Arabia. J Geol Soc India. 89:669–674.
  • Alharbi T, Zaidi F. 2018. Hydrochemical classification and multivariate statistical analysis of groundwater from Wadi Al-Al-Al-Sahba area in central Saudi Arabia. Arab J Geosci. 11:643.
  • Alharbi T, El-Sorogy A, Qaysi S, Alshehri F. 2021. Evaluation of groundwater quality in central Saudi Arabia using hydrogeochemical characteristics and pollution indices. Environ Sci Pollut Res. 28:53819–53832.
  • Allafta H, Opp C, Patra S. 2021. Identification of groundwater potential zones using remote sensing and GIS techniques: a case study of the Shatt Al-Arab Basin. Remote Sens. 13:112. DOI:10.3390/rs13010112.
  • Al-Mahmoud M. 2021. Regional hydrogeology of the Arab-D aquifer in Central and Eastern Saudi Arabia with highlighting its environmental and energy potential. Arab J Geosci. 14:379.
  • Almazroui M. 2011. Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos Res. 99:400–414.
  • Al-Omran A, Al-Barakah F, Altuquq A, Aly A, Nadeem M. 2015. Drinking water quality assessment and water quality index of Riyadh, Saudi Arabia. Water Qual Res J. 50(3):287–296.
  • Al-Shabeeb AR. 2015. A modified analytical hierarchy process method to select sites for groundwater recharge in Jordan, University of Leicester.
  • Al-Shabeeb AR. 2016. The use of AHP within GIS in selecting potential sites for water harvesting sites in the Azraq Basin—Jordan. J Geogr Inf Syst. 8 (1):73–88.
  • Al-Turki A, Abdel-Nasser G, Al-Faraj A, Shahwan A, Al-Malik A. 2011. Evaluation of well water quality in Southern Tihama plain, Saudi Arabia. Food Sci Agr Res Center, King Saud University. (172):5–47.
  • ARAMCO, USGS. 1963. Geologic map of the Arabian Peninsula – U.S. Geological Survey Misc. Inv. Map I-270 A, scale 1:2,000,000.
  • ARAMCO 1960. A study of the Wasia aquifer in Eastern Saudi Arabia. Riyadh, Saudi Arabia: Aramco; p. 128.
  • Arshad A, Zhang Z, Zhang W, Dilawar A. 2020. Mapping favorable groundwater potential recharge zones using a GIS-based analytical hierarchical process and probability frequency ratio model: a case study from an agro-urban region of Pakistan. Geosci Front. 11:1805–1819.
  • Arshad A, Zhang W, Zhang Z, Wang S, Zhang B, Jehanzeb M, Cheema M, Shalamzari MJ. 2021. Reconstructing High-Resolution Gridded Precipitation Data Using an Improved Downscaling Approach over the High Altitude Mountain Regions of Upper Indus Basin (UIB). Sci Total Environ. 784:147140.
  • Arulbalaji P, Padmalal D, Sreelash K. 2019. GIs and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep. 9:2082.
  • Avand M, Janizadeh S, Tien Bui D, Pham VH, Ngo PTT, Nhu V-H. 2020. A tree-based intelligence ensemble approach for spatial prediction of potential groundwater. Int J Digital Earth. 13(12):1408–1422.
  • Avand M, Moradi H, Lasboyee MR. 2021. Spatial modeling of flood probability using geo-environmental variables and machine learning models, case study: Tajan watershed, Iran. Adv Space Res. 67(10):3169–3186.
  • Avdan U, Jovanovska G. 2016. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Sens. 2016:1480307. DOI:10.1155/2016/1480307.
  • Bashe BB. 2017. Groundwater potential mapping using Remote Sensing andGIS in rift valley lakes basin, Weito Sub Basin. Ethiopia. Inter J Scientific Eng Res. 8(2):43–50.
  • Bazuhair ASA. 1989. Optimum aquifer yield of four aquifers in AIKharj area Saudi Arabia. JKA U: Earth Sci. 2:37–49.
  • Benjmel K, Amraoui F, Boutaleb S, Ouchchen M, Tahiri A, Touab A. 2020. Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and multicriteria data analysis (case of the Ighrem Region, Western Anti-Atlas, Morocco). Water. 12:471.
  • BRGM. 1976. Hydrogeological investigations of the Al Wasia aquifer in the eastern province of Saudi Arabia. Riyadh, Saudi Arabia: Ministry of Agriculture and Water, Water Resources Development Department, p. 109.
  • Conoco. 1987. Geological map of Egypt, scale 1:500,000. The Egyptian General Petroleum Corporation, Cairo.
  • Dar T, Rai N, Bhat A. 2020. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol Ecol Landsc. 1–7. DOI:10.1080/24749508.2020.1726562
  • Edgell HS. 1997. Aquifers of Saudi Arabia and their geological framework. Arab J Sci Eng. 22:3–31.
  • El Alfy M, Faraj T. 2016. Spatial distribution and health risk assessment for groundwater contamination from intensive pesticide use in arid areas. Environ Geochem Health. 39:231–253.
  • El Alfy M, ElSebaie I, Aguib I, Mohamed A, Tarawneh Q. 2016. Assessing groundwater geospatial variation using microgravity investigation in the arid Al Riyadh Metropolitan Area, Saudi Arabia: a case study. Water Resour Manage. 30:3845–3860.
  • Gaber A, Abdelkareem M, Abdelsadek IS, Koch M, El-Baz F. 2018. Using InSAR coherence for investigating the interplay of fluvial and aeolian features in arid lands: implications for groundwater potential in Egypt. Remote Sens. 10:832.
  • Gaber A, Mohamed AK, ElGalladi A, Abdelkareem M, Beshr AM, Koch M. 2020. Mapping the groundwater potentiality of West Qena Area, Egypt, using integrated remote sensing and hydro-geophysical techniques. Remote Sens. 12:1559.
  • Ghosh D, Mandal M, Banerjee M, Karmakar M. 2020. Impact of hydro-geological environment on availability of groundwater using analytical hierarchy process (AHP) and geospatial techniques: a study from the upper Kangsabati river basin. Groundw Sustain Dev. 11:100419.
  • Hagras MA, Elmoustafa AM, Kotb A. 2013. Flood plain mitigation in arid regions case study: south of Al. Kharj City, Saudi Arabia. Int J Res Rev Appl Sci. 16 (1):147–156.
  • Harris JR, Wilkinson L, Heather K, Fumerton S, Bernier MA, Ayer J, Dahn R. 2001. Application of GIS processing techniques for producing mineral prospectivity maps—a case study: mesothermal Au in the Swayze Greenstone Belt, Ontario, Canada. Nat Resour Res. 10(2):91–124.
  • Hoetzl H. 1995. Groundwater recharge in an arid karst area (Saudi Arabia), Application of Tracers in Arid Zone Hydrology. (Proceedings of the Vienna Symposium 1994, August IAHS Publ. no. 232.
  • Jaju MM, Nader FH, Roure F, Matenco L. 2016. Optimal aquifers and reservoirs for CCS and EOR in the Kingdom of Saudi Arabia: an overview. Arab J Geosci. 9:604.
  • Khogali A, Birkle P, Al-Shaibani A, Keller M, Tawabini B, Makkawi M. 2020. Geochemical assessment of potential sources for nitrate in the Wasia Aquifer, Al Kharj Area, Central Saudi Arabia. Water 12:1479.
  • Kumar VA, Mondal NC, Ahmed S. 2020. Identification of groundwater potential zones using RS, GIS and AHP techniques: a case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. J Indian Soc Remote Sens. 48:497–511.
  • Lababidi MM, Hamdan AN. 1985. Preliminary lithostratigraphic correlation study in OAPEC member countries. Kuwait: Organization of Arab Petroleum Exporting Countries.
  • Lakshmi S, Reddy Y. 2018. Identification of groundwater potential zones using GIS and remote sensing. Int J Pure Appl Math. 119:3195–3210.
  • Lee S, Hyun Y, Lee S, Lee M. 2020. Groundwater potential mapping using remote sensing and GIS-based machine learning techniques. Remote Sens. 12:1200.
  • Lee S, Hong S-M, Jung H-S. 2018. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto Int. 33:847–861.
  • Lettenmaier DP, Alsdorf D, Dozier J, Huffman GJ, Pan M, Wood EF. 2015. In roads of remote sensing into hydrologic science during the WRR era. Water Resour Res. 51(9):7309–7342.
  • Magesh NS, Chandrasekar N, Prince J. 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF Techniques. Geosci Front. 3(2):189–196.
  • Mallick J, Khan RA, Ahmed M, Alqadhi SD, Alsubih M, Falqi I, Hasan MA. 2019. Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water. 11(12):2656. DOI:10.3390/w11122656.
  • McCabe MF, Rodell M, Alsdorf DE, Miralles DG, Uijlenhoet R, Wagner W, Lucieer A, Houborg R, Verhoest NEC, Franz TE, et al. 2017. The future of Earth observation in hydrology. Hydrol Earth Syst Sci. 21(7):3879–3914.
  • Ministry of Environment, Water and Agriculture. 2019. Sustainable water for sustainable development. Saudi Water Forum Al Riyadh March 17–19.
  • Moubark K, Abdelkareem M. 2018. Characterization and assessment of groundwater resources using hydrogeochemical analysis, GIS, and field data in southern Wadi Qena, Egypt. Arabian J Geosci. 11(19):1–13.
  • Mukherjee I, Singh UK. 2020. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. CATENA. 194:104681.
  • Mukhopadhyay A, Al-Sulaimi J, Al-Awadi E, Al-Ruwaih F. 1996. An overview of the tertiary geology and hydrogeology of the northern part of the Arabian Gulf region with special reference to Kuwait. Earth Sci Rev. 40(3–4):259–295.
  • Murmu P, Kumar M, Lal D, Sonker I, Singh S. 2019. Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater Sust Develop. 9:1002392
  • Naghibi SA, Pourghasemi HR, Abbaspour K. 2018. A comparison between ten advanced and soft computing models for groundwater quanta potential assessment in Iran using RS and GIS. Theor Appl Climatol. 131:967–984.
  • Nair HC, Padmalal D, Joseph A, Vinod PG. 2017. Delineation of groundwater potential zones in river basins using geospatial tools: an example from Southern Western Ghats, Kerala, India. J Geovisual Spat Anal. 1(1–2):5.
  • O'Callaghan JF, Mark DM. 1984. The extraction of drainage networks from digital elevation data. Comput Vis Graph Image Process. 28:323–344.
  • Owuor SO, Butterbach-Bahl K, Guzha AC, Rufino MC, Pelster DE, Díaz-Pinés E, Breuer L. 2016. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol Process. 5(1):16. DOI:10.1186/s13717-016-0060-6.
  • Pande CB, Khadri SFR, Moharir KN, Patode RS. 2018. Assessment of groundwater potential zonation of Mahesh River basin Akola and Buldhana districts, Maharashtra, India using remote sensing and GIS techniques. Sustain Water Resour Manag. 4:965–979.
  • Podvezko V. 2009. Application of AHP technique. J Bus Econ Manag. 10(2):181–189.
  • Rahmati O, Avand M, Yariyan P, Tiefenbacher JP, Azareh A, Bu DT. 2020. Assessment of Gini-, entropy- and ratio-based classification trees for groundwater potential modelling and prediction. Geocarto Int. 1–20. DOI:10.1080/10106049.2020.1861664
  • Rahmati M, Weihermüller L, Vereecken H. 2018. Soil water infiltration global (SWIG) database. Pangaea. DOI:10.1594/PANGAEA.885492.
  • Robinson CA, El-Baz F, Al-Saud TSM, Jeon SB. 2006. Use of radar data to delineate palaeodrainage leading to the Kufra Oasis in the Eastern Sahara. J African Earth Sci. 44(2):229–240.
  • Saaty TL. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. New York, NY, USA: McGraw-Hill.
  • Saaty TL. 1990. Decision making for leaders: the analytic hierarchy process for decisions in a complex world. Pittsburgh, PA, USA: RWS Publications.
  • Salman A, Al Dosari A, Zaidi F, Loni O. 2017. Environmental assessment of soil, groundwater, and surface water quality in the south of the Riyadh, Saudi Arabia. Arab J Geosci. 10:490.
  • Saaty T. 1995. Decision making for leaders. 3rd ed. Pittsburgh, PA, USA: RWS Publications.
  • Shaban A, Khawlie M, Abdallah C. 2006. Use of remote sensing and GIS to determine recharge potential zone: the case of occidental Lebanon. Hydrogeol J. 14:433–443.
  • Souissi D, Msaddek MH, Zouhri L, Chenini I, El May M, Dlala M. 2018. Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia. Hydrol Sci J. 63(2):251–268.
  • Tkach RJ, Simonovic SP. 1997. A new approach to multi-criteria decision making in water resources. J Geogr Inf Decis Anal. 1(1):25–44.
  • Van Phong T, Pham BT, Trinh PT, Ly H, Vu QH, Ho LS, Le HV, Phong LH, Avand M, Prakash I. 2021. Groundwater potential mapping using GIS-based hybrid artificial intelligence methods. Groundwater. 59(5):745–760.
  • Vaslet D, Al-Muallem M, Maddah S, et al. 1991. Geologic Map of the Ar Riyadh Quadrangle, Sheet 24 I, Kingdom of Saudi Arabia [1:250.000] & Explanatory Notes to the Geologic Map of the Ar Riyadh Quadrangle, Kingdom of Saudi Arabia. Ministry of Petroleum and Mineral Resources: Riyadh.
  • Waikar ML, Nilawar AP. 2014. Identification of groundwater potential zone using remote sensing and GIS technique. Int J Innov Res Sci Eng Technol. 3(5):12163–12174.
  • Yariyan P, Avand M, Omidvar E, Pham QB, Linh N, Tiefenbacher J. 2020a. Optimization of statistical and machine learning hybrid models for groundwater potential mapping. Geocarto Int. 11:2282–2314.
  • Yariyan P, Avand M, Abbaspour RA, Haghighi AT, Costache R, Ghorbanzadeh O, Janizadeh S, Blaschke T. 2020b. Flood susceptibility mapping using an improved analytic network process with statistical models. Geomat Nat Hazards Risk. 11(1):2282–2314.
  • Yifru BA, Mitikub DB, Tolerab MB, Chang SW, Chung M. 2020. Groundwater potential mapping using SWAT and GIS-based multi-criteria decision analysis. KSCE J Civ Eng. 24(8):2546–2559.
  • Yousefi S, Avand M, Yariyan P, Pourghasemid H, Keesstra S, Tavangar S, Tabibian S. 2020. A novel GIS-based ensemble technique for rangeland downward trend mapping as an ecological indicator change. Ecol Indic. 117:106591.
  • Zhu Q, Abdelkareem M. 2021. Mapping groundwater potential zones using a knowledge-driven approach and GIS analysis. Water. 13:579.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.