209
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Compiling a high-resolution country-level ecosystem map to support environmental policy: methodological challenges and solutions from Hungary

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & show all
Pages 8746-8769 | Received 23 Apr 2021, Accepted 07 Nov 2021, Published online: 06 Dec 2021

References

  • Aggestam F, Mangalagiu D. 2020. Is sharing truly caring? Environmental data value chains and policymaking in Europe and Central Asia. Environ Sci Policy. 114:152–161.
  • Arnold S, Kosztra B, Banko G, Smith G, Hazeu G, Bock M, Valcarcel Sanz N. 2013. The EAGLE concept—a vision of a future European Land Monitoring Framework. In: Proceedings 33th EARSeL Symposium towards Horizon. Vol. 2013. [place unknown]: Citeseer; p. 551–568.
  • Barrett B, Raab C, Cawkwell F, Green S. 2016. Upland vegetation mapping using Random Forests with optical and radar satellite data. Remote Sens Ecol Conserv. 2(4):212–231.
  • Blasi C, Capotorti G, Alós Ortí MM, Anzellotti I, Attorre F, Azzella MM, Carli E, Copiz R, Garfì V, Manes F, et al. 2017. Ecosystem mapping for the implementation of the European Biodiversity Strategy at the national level: The case of Italy. Environ Sci Policy. 78:173–184.
  • Böhner J, Conrad O. 2001. SAGA-GIS Module Library Documentation (v2.2.3) [Internet]; [accessed 2021 Jul 14]. http://www.saga-gis.org/saga_tool_doc/2.2.3/index.html.
  • Böhner J, Selige T. 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In: Böhner J, McCloy KR, Strobl J, editors. SAGA - Analysis and modelling applications. Göttingen: Goettinger Geographische Abhandlungen; p. 13–28.
  • Bölöni J, Molnár Z, Illyés E, Kun A. 2007. A new habitat classification and manual for standardized habitat mapping. Ann Bot. 7(0):55–76; [accessed 2020 Jul 6]. https://ojs.uniroma1.it/index.php/Annalidibotanica/article/view/9085.
  • Bölöni J, Molnár Z, Kun A. 2011. Magyarország élőhelyei. A hazai vegetációtípusok leírása és határozója [Habitats of Hungary. A description of Hungarian habitats]. Vácrátót: MTA ÖBKI.
  • Bray J, Curtis J. 1957. An ordination of upland forest communities of southern Wisconsin. Ecol Monogr. 27(4):325–349.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Burai P, Deák B, Valkó O, Tomor T. 2015. Classification of herbaceous vegetation using airborne hyperspectral imagery. Remote Sensing. 7(2):2046–2066.
  • Burkhard B, Santos-Martin F, Nedkov S, Maes J. 2018. An operational framework for integrated Mapping and Assessment of Ecosystems and their Services (MAES). OE. 3(2018):e22831.
  • Büttner, G. 2012. Guidelines for verification and enhancement of high resolution layers produced under GMES initial operations (GIO) Land monitoring 2011–2013. European Environment Agency.
  • Büttner, G. 2014. CORINE land cover and land cover change products. In: Manakos I, Braun M, editors. Land use and land cover mapping in Europe. London: Springer; p. 55–74.
  • Černecký J, Gajdoš P, Špulerová J, Halada Ľ, Mederly P, Ulrych L, Ďuricová V, Švajda J, Černecká Ľ, Andráš P, et al. 2020. Ecosystems in Slovakia. J Maps. 16(2):28–35.
  • Chignell SM, Luizza MW, Skach S, Young NE, Evangelista PH. 2018. An integrative modeling approach to mapping wetlands and riparian areas in a heterogeneous Rocky Mountain watershed. Remote Sens Ecol Conserv. 4(2):150–165.
  • Congalton RG. 2001. Accuracy assessment and validation of remotely sensed and other spatial information. Int J Wildland Fire. 10(4):321–328.
  • Corbane C, Lang S, Pipkins K, Alleaume S, Deshayes M, García Millán VE, Strasser T, Vanden Borre J, Toon S, Michael F. 2015. Remote sensing for mapping natural habitats and their conservation status – new opportunities and challenges. Int J Appl Earth Obs Geoinf. 37:7–16.
  • Costanza R, de Groot R, Sutton P, van der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK. 2014. Changes in the global value of ecosystem services. Global Environ Change. 26:152–158..
  • Crouzat E, Zawada M, Grigulis K, Lavorel S. 2019. Design and implementation of a national ecosystem assessment – insights from the French mountain systems’ experience. Ecosyst People. 15(1):288–302.
  • Czúcz B,Kalóczkai Á,Arany I,Kelemen K,Papp J,Havadtői K,Kelemen M,Vári Á. 2018. How to design a transdisciplinary regional ecosystem service assessment: a case study from Romania, Eastern Europe. One Ecosystem. (3):e26363.
  • Csonka B, Mikus G, Martinovich L, László I, Csornai G, Tikasz L, Kocsis A, Bognár E, Szekeres Á, Tóth GL, et al. 2011. Introduction of two GIS-based applications supporting area-based agricultural subsidies in Hungary (LPIS and VINGIS). In: Land quality and land use information in the European Union. Luxembourg: Publications Office of the European Union;p. 233–245.
  • Davies CE, Moss D, Hill MO. 2004. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency-European Topic Centre on Nature Protection and Biodiversity.
  • Delegido J, Verrelst J, Alonso L, Moreno J. 2011. Evaluation of Sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors (Basel). 11(7):7063–7081..
  • Diek S, Fornallaz F, Schaepman ME, De Jong R. 2017. Barest pixel composite for agricultural areas using Landsat time series. Remote Sensing. 9(12):1245..
  • Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, et al. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science. 366(6471):aax3100. 10.1126/science.aax3100
  • Dong M, Bryan BA, Connor JD, Nolan M, Gao L. 2015. Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling. Ecosyst Serv. 15:63–74.
  • EC. 2006. Halting the loss of biodiversity by 2010 and beyond: Sustaining ecosystem services for human well-being. Brussels: Communication from the Commission of the European Communities.
  • EC. 2013. Interpretation manual of European Union habitats – EUR28. Brussels: European Commission, DG Environ. p. 144.
  • EC. 2019. The European Green Deal. Communication from the Commission to the European Parliament, The European Council, The Council, The European Economic And Social Committee and The Committee Of The Regions COM/2019/640 final; [accessed 2020 Jun 23]. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1588580774040&uri=CELEX:52019DC0640.
  • EC. 2020. EU biodiversity strategy for 2030 bringing nature back into our lives. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions COM/2020/380 final; [accessed 2020 Jun 23]. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1590574123338&uri=CELEX%3A52020DC0380.
  • Eionet Action Group on Land Monitoring in Europe (EAGLE) 2015–2021. [accessed 2021 Nov 15]. https://land.copernicus.eu/eagle.
  • Erhard M, Banko G, Malak DA, Martin FS. 2017. 3.5. Mapping ecosystem types and conditions. In: Burkhard B, Maes J, editors. Mapping ecosystem services. Sofia: Pensoft Publishers; p. 75–81.
  • Fisher JRB, Acosta EA, Dennedy‐Frank PJ, Kroeger T, Boucher TM. 2018. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sens Ecol Conserv. 4(2):137–149.
  • Foody GM. 2015. Valuing map validation: the need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services. Ecol Econ. 111:23–28.
  • Fraser R, McLennan D, Ponomarenko S, Olthof I. 2012. Image-based predictive ecosystem mapping in Canadian arctic parks. Int J Appl Earth Obs Geoinf. 14(1):129–138.
  • Frélichová J, Vačkář D, Pártl A, Loučková B, Harmáčková ZV, Lorencová E. 2014. Integrated assessment of ecosystem services in the Czech Republic. Ecosyst Serv. 8:110–117.
  • Gao B. 1996. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ. 58(3):257–266..
  • Giuliani G, Chatenoux B, De Bono A, Rodila D, Richard J-P, Allenbach K, Dao H, Peduzzi P. 2017. Building an earth observations data cube: lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data. 1(1–2):100–117.
  • Grunewald K, Herold H, Marzelli S, Meinel G, Richter B, Syrbe R-U, Walz U. 2016. Assessment of ecosystem services at the national level in Germany—illustration of the concept and the development of indicators by way of the example wood provision. Ecol Indic. 70:181–195.
  • Grunewald K, Schweppe-Kraft B, Syrbe R-U, Meier S, Krüger T, Schorcht M, Walz U. 2020. Hierarchical classification system of Germany’s ecosystems as basis for an ecosystem accounting – methods and first results. OE. 5:e50648.
  • Horváth F, Molnár Z, Bölöni J, Pataki Z, Polgár L, Révész A, Oláh K, Krasser D, Illyés E. 2008. Fact sheet of the MÉTA database 1.2. Acta Bot Hungarica. 50(Supplement 1):11–34.
  • Inglada J, Vincent A, Arias M, Tardy B, Morin D, Rodes I. 2017. Operational high resolution land cover map production at the country scale using satellite image time series. Remote Sensing. 9(1):95.
  • IPBES. 2019. Global assessment report of the intergovernmental science-policy platform on biodiversity and ecosystem services. Bonn, Germany: IPBES Secretariat.
  • Land Parcel Identification Scheme of Hungary (LPIS-HU) 2018. Magyar Államkincstár (Hungarian State Treasury). [accessed 2021 Nov 15]. https://mepar.hu/.
  • Langanke T, Moran A, Dulleck B, Schleicher C. 2016. Copernicus land monitoring service–high resolution layer water and wetness product specifications document. Copernicus Team at EEA.
  • Lecours V. 2017. On the use of maps and models in conservation and resource management (warning: results may vary). Front Mar Sci. 4; [accessed 2021 Jan 12]. 10.3389/fmars.2017.00288/full.
  • Lee J-S, Pottier E, editors. 2017. Polarimetric radar imaging: from basics to applications. Boca Raton, FL: CRC Press..
  • Lucas R, Blonda P, Bunting P, Jones G, Inglada J, Arias M, Kosmidou V, Petrou ZI, Manakos I, Adamo M, et al. 2015. The Earth Observation Data for Habitat Monitoring (EODHaM) system. Int J Appl Earth Obs Geoinf. 37:17–28.
  • Maes J, Teller A, Erhard M, Liquete C, Braat L, Berry P, Egoh B, Puydarrieux P, Fiorina C, Santos F, et al. 2013. An analytical framework for ecosystem assessments under action 5 of the EU biodiversity strategy to 2020. Luxembourg: Publications Office of the European Union.
  • McFeeters SK. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens. 17(7):1425–1432..
  • Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY. 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant. 106(1):135–141..
  • Molnár Z, Bartha S, Seregélyes T, Illyés E, Botta-Dukát Z, Tímár G, Horváth F, Révész A, Kun A, Bölöni J, et al. 2007. A grid-based, satellite-image supported, multi-attributed vegetation mapping method (MÉTA). Folia Geobot. 42(3):225–247.
  • Naszádos A, Szekeres Á, Tüske T. 2017. A MePAR felszínborítási adatának leírása. A 2015. és 2016. évi kezdő MePAR-ban szereplő felszínborítási kategóriák, valamint a felszínborítási adathoz köthető egyéb jelzések leírása [Description of the land cover data of the Hungarian LPIS]. Budapest: Budapest Főváros Kormányhivatala.
  • Nedkov S, Borisova B, Koulov B, Zhiyanski M, Bratanova-Doncheva S, Nikolova M, Kroumova J. 2018. Towards integrated mapping and assessment of ecosystems and their services in Bulgaria: the Central Balkan case study. OE. 3:e25428.
  • Nowak MM, Dziób K, Ludwisiak Ł, Chmiel J. 2020. Mobile GIS applications for environmental field surveys: a state of the art. Glob Ecol Conserv. 23:e01089.
  • Palomo I, Willemen L, Drakou E, Burkhard B, Crossman N, Bellamy C, Burkhard K, Campagne CS, Dangol A, Franke J, et al. 2018. Practical solutions for bottlenecks in ecosystem services mapping. OE. 3:e20713.
  • Pásztor L,Laborczi A,Takács K,Illés G,Szabó J,Szatmári G. 2020. Progress in the elaboration of GSM conform DSM products and their functional utilization in Hungary. Geoderma Regional. 21:e00269.
  • Perennou C, Guelmami A, Paganini M, Philipson P, Poulin B, Strauch A, Tottrup C, Truckenbrodt J, Geijzendorffer IR. 2018. Chapter Six - Mapping Mediterranean wetlands with remote sensing: a good-looking map is not always a good map. In: Bohan DA, Dumbrell AJ, Woodward G, Jackson M, editors. Advances in ecological research [Internet]. Vol. 58. [place unknown]: Academic Press; p. 243–277; [accessed 2020 Jun 23]; http://www.sciencedirect.com/science/article/pii/S0065250417300272.
  • Reschke J, Hüttich C. 2014. Continuous field mapping of Mediterranean wetlands using sub-pixel spectral signatures and multi-temporal Landsat data. Int J Appl Earth Obs Geoinf. 28:220–229.
  • Rikimaru A, Roy PS, Miyatake S. 2002. Tropical forest cover density mapping. Trop Ecol. 43(1):39–47.
  • Rocchini D, Foody GM, Nagendra H, Ricotta C, Anand M, He KS, Amici V, Kleinschmit B, Förster M, Schmidtlein S, et al. 2013. Uncertainty in ecosystem mapping by remote sensing. Comput Geosci. 50:128–135.
  • Rouse JW, Haas RH, Scheel JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Proceedings of the 3rd Earth Resource Technology Satellite (ERTS) Symposium, Greenbelt. Vol. 1. p. 48–62.
  • Ruckelshaus MH, Jackson ST, Mooney HA, Jacobs KL, Kassam K-AS, Arroyo MTK, Báldi A, Bartuska AM, Boyd J, Joppa LN, et al. 2020. The IPBES global assessment: pathways to action. Trends Ecol Evol. 35(5):407–414.
  • Schuster C, Schmidt T, Conrad C, Kleinschmit B, Förster M. 2015. Grassland habitat mapping by intra-annual time series analysis – comparison of RapidEye and TerraSAR-X satellite data. Int J Appl Earth Obs Geoinf. 34:25–34.
  • See L, Perger C, Hofer M, Weichselbaum J, Dresel C, Fritz S. 2015. LACO-WIKI: an open access online portal for land cover validation. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci. II-3/W5:167–171.
  • Somodi I, Ewald J, Bede-Fazekas Á, Molnár Z. 2021. The relevance of the concept of potential natural vegetation in the Anthropocene. Plant Ecol Diversity. 14(1–2):13–22.
  • Somodi I, Molnár Z, Czúcz B, Bede‐Fazekas Á, Bölöni J, Pásztor L, Laborczi A, Zimmermann NE. 2017. Implementation and application of multiple potential natural vegetation models – a case study of Hungary. J Veg Sci. 28(6):1260–1269.
  • Somodi I, Molnár Z, Ewald J. 2012. Towards a more transparent use of the potential natural vegetation concept – an answer to Chiarucci et al. J Veg Sci. 23(3):590–595.
  • Strand J, Soares-Filho B, Costa MH, Oliveira U, Ribeiro SC, Pires GF, Oliveira A, Rajão R, May P, van der Hoff R, et al. 2018. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat Sustain. 1(11):657–664..
  • Strategic Assessments supporting the long term conservation of natural values of community interest as well as the national implementation of the EU Biodiversity Strategy to 2020 (2017–2021). [accessed 2021 Nov 15]. http://termeszetem.hu/en/.
  • Stratoulias D, Balzter H, Sykioti O, Zlinszky A, Tóth VR. 2015. Evaluating Sentinel-2 for Lakeshore habitat mapping based on airborne hyperspectral data. Sensors (Basel)). 15(9):22956–22969.
  • Strobl P, Baumann P, Lewis A, Szantoi Z, Killough B, Purss M, Craglia M, Nativi S, Held A, Dhu T. 2017. The six faces of the data cube. In: Proceedings of the Conference on Big Data from Space (BiDS’17); Toulouse, France; p. 28–30.
  • Surek G, Nádor G, Friedl Z, Gyimesi B, Rada M, Gera ÁD, Hubik I, Rotterné Kulcsár A, Török C. 2016. Application of radar and optical images to create Copernicus high resolution layers: case Studies in Hungary. In: Ouwehand L, editor. Living Planet Symposium, Proceedings of the Conference held 9–13 May 2016 in Prague, Czech Republic. ESA-SP Volume 740, ISBN: 978-92-9221-305-3, p. 177.
  • Takács G, Molnár Z. 2009. National biodiversity monitoring system XI. Habitat mapping. 2nd modified ed. Budapest: Ministry of Environment and Water. p. 54.
  • Thamaga KH, Dube T, Shoko C. 2021. Advances in satellite remote sensing of the wetland ecosystems in Sub-Saharan Africa. Geocarto Int. [accessed 2021 July 8]:23 p.
  • The Ecosystem Map of Hungary. 2019. Agrárminisztérium. [accessed 2021 Nov 15]. http://alapterkep.termeszetem.hu/.
  • The Ecosystem Map of Hungary – detailed methodology downloads. 2019. Agrárminisztérium. [accessed 2021 Nov 15]. http://termeszetem.hu/files/download/documents/document_img/35/?2020-01-27%2015:45:44.
  • Tobisch T, Kottek P. 2013. Forestry-related databases of the Hungarian forestry directorate. National Food Chain Safety Office (NFCSO), Hungary [Internet]. [accessed 2020 Jun 23]. https://portal.nebih.gov.hu/documents/10182/862096/Forestry_related_databases.pdf/3ff92716-2301-4894-a724-72fafca9d4fc.
  • Török K, Fodor L, editors. 2006. Élőhelyek, mohák és gombák. Results of the Hungarian Biodiversity Monitoring System. Budapest. KvVM TVH; p. 1.
  • Tüxen R. 1956. Die Heutige Potentielle Natürliche Vegetation als Gegenstand der Vegetationskartierung. Angew Pflanzensoziol. 13:4–42.
  • VINGIS 2017–2021. Nemzeti Földügyi Központ. [accessed 2021 Nov 15]. https://www.vingis.hu/.
  • Weiss M, Banko G. 2018. Ecosystem Type Map v3. 1 – Terrestrial and Marine Ecosystems. ETC/BD report to the EEA. Paris: European Environment Agency (EEA)—European Topic Centre on Biological Diversity.
  • Zlinszky A, Mücke W, Lehner H, Briese C, Pfeifer N. 2012. Categorizing wetland vegetation by airborne laser scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sensing. 4(6):1617–1650.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.