208
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A novel artificial intelligence-based approach for mapping groundwater nitrate pollution in the Andimeshk-Dezful plain, Iran

&
Pages 10434-10458 | Received 27 Jun 2021, Accepted 25 Jan 2022, Published online: 07 Feb 2022

References

  • Abdullah T, Ali S, Al-Ansari N, Knutsson S. 2015. Groundwater vulnerability mapping using lineament density on standard DRASTIC model: case study in Halabja Saidsadiq Basin, Kurdistan Region, Iraq. Engineering. 07(10):644–667.
  • Alberga V. 2009. Similarity measures of remotely sensed multi-sensor images for change detection applications. Remote Sens. 1(3):122–143.
  • Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 43(6):1223–1232.
  • Arabgol R, Sartaj M, Asghari K. 2016. Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. Environ Model Assess. 21(1):71–82.
  • Arauzo M, Martínez-Bastida JJ. 2015. Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: groundwater vulnerability vs. groundwater pollution. Environ Earth Sci. 73(12):8271–8286.
  • Band SS, Janizadeh S, Pal SC, Chowdhuri I, Siabi Z, Norouzi A, Melesse AM, Shokri M, Mosavi A. 2020. Comparative analysis of artificial intelligence models for accurate estimation of groundwater nitrate concentration. Sensors. 20(20):5763.
  • Barzegar R, Moghaddam AA, Deo R, Fijani E, Tziritis E. 2018. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci Total Environ. 621:697–712.
  • Benedek C, Shadaydeh M, Kato Z, Szirányi T, Zerubia J. 2015. Multilayer Markov random field models for change detection in optical remote sensing images. ISPRS J Photogramm Remote Sens. 107:22–37.
  • Benedek C, Szirányi T. 2009. Change detection in optical aerial images by a multilayer conditional mixed Markov model. IEEE Trans Geosci Remote Sensing. 47(10):3416–3430.
  • Besag J. 1986. On the statistical analysis of dirty pictures. J Royal Stat Soc: Ser B (Stat Methodol). 48(3):259–279.
  • Böckenholt U. 1999. Measuring change: Mixed Markov models for ordinal panel data. Br J Math Stat Psychol. 52(1):125–136.
  • Bolin D, Lindström J, Eklundh L, Lindgren F. 2009. Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields. Comput Stat Data Anal. 53(8):2885–2896.
  • Boucher M, Favreau G, Descloitres M, Vouillamoz JM, Massuel S, Nazoumou Y, Cappelaere B, Legchenko A. 2009. Contribution of geophysical surveys to groundwater modelling of a porous aquifer in semiarid Niger: an overview. CR Geosci. 341(10–11):800–809.
  • Bouraoui F, Grizzetti B. 2014. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci Total Environ. 468-469:1267–1277.
  • Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and regression trees. Boca Raton, FL: CRC Press.
  • Bruzzone L, Prieto DF. 2000. Automatic analysis of the difference image for unsupervised change detection. IEEE Trans Geosci Remote Sens. 38(3):1171–1182.
  • Burri NM, Weatherl R, Moeck C, Schirmer M. 2019. A review of threats to groundwater quality in the anthropocene. Sci Total Environ. 684:136–154.
  • Cardenas-Martinez A, Rodriguez-Galiano V, Luque-Espinar JA, Mendes MP. 2020. Predictive modelling of groundwater nitrate pollution at a regional scale using machine learning and feature selection. In: EGU General Assembly Conference Abstracts. p. 5414.
  • Caschetto M, Barbieri M, Galassi DM, Mastrorillo L, Rusi S, Stoch F, Di Cioccio A, Petitta M. 2014. Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response. Environ Earth Sci. 71(4):1791–1807.
  • Chen W, Chen X, Peng J, Panahi M, Lee S. 2021a. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci Front. 12(1):93–107.
  • Chen W, Chen Y, Tsangaratos P, Ilia I, Wang X. 2020a. Combining evolutionary algorithms and machine learning models in landslide susceptibility assessments. Remote Sens. 12(23):3854.
  • Chen W, Lei X, Chakrabortty R, Chandra Pal S, Sahana M, Janizadeh S. 2021b. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility. J Environ Manage. 284:112015.
  • Chen W, Li Y. 2020. GIS-based evaluation of landslide susceptibility using hybrid computational intelligence models. CATENA. 195:104777.
  • Chen W, Zhao X, Tsangaratos P, Shahabi H, Ilia I, Xue W, Wang X, Ahmad BB. 2020b. Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. J Hydrol. 583:124602.
  • Chen X, Chen J, Shi Y, Yamaguchi Y. 2012. An automated approach for updating land cover maps based on integrated change detection and classification methods. ISPRS J Photogramm Remote Sens. 71:86–95.
  • Chen X, Chen W. 2021. GIS-based landslide susceptibility assessment using optimized hybrid machine learning methods. CATENA. 196:104833.
  • Chica-Olmo M, Luque-Espinar JA, Rodriguez-Galiano V, Pardo-Igúzquiza E, Chica-Rivas L. 2014. Categorical Indicator Kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain). Sci Total Environ. 470:229–239.
  • Chitsazan M, Akhtari Y. 2009. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kherran Plain, Khuzestan, Iran. Water Resour Manage. 23(6):1137–1155.
  • Choubin B, Moradi E, Golshan M, Adamowski J, Sajedi-Hosseini F, Mosavi A. 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci Total Environ. 651(Pt 2):2087–2096.
  • Conant B, Jr, Robinson CE, Hinton MJ, Russell HA. 2019. A framework for conceptualizing groundwater-surface water interactions and identifying potential impacts on water quality, water quantity, and ecosystems. J Hydrol. 574:609–627.
  • Deo RC, Tiwari MK, Adamowski JF, Quilty JM. 2017. Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stoch Environ Res Risk Assess. 31(5):1211–1240.
  • Díaz-Alcaide S, Martínez-Santos P. 2019. Mapping fecal pollution in rural groundwater supplies by means of artificial intelligence classifiers. J Hydrol. 577:124006.
  • Dixon B. 2009. A case study using support vector machines, neural networks and logistic regression in a GIS to identify wells contaminated with nitrate-N. Hydrogeol J. 17(6):1507–1520.
  • Elisante E, Muzuka AN. 2016. Assessment of sources and transformation of nitrate in groundwater on the slopes of Mount Meru, Tanzania. Environ Earth Sci. 75(3):277.
  • Fabro AYR, Ávila JGP, Alberich MVE, Sansores SAC, Camargo-Valero MA. 2015. Spatial distribution of nitrate health risk associated with groundwater use as drinking water in Merida, Mexico. Appl Geogr. 65:49–57.
  • Fawcett T. 2006. An introduction to ROC analysis. Pattern Recognit Lett. 27(8):861–874.
  • Fridman A. 2003. Mixed markov models. Proc Natl Acad Sci USA. 100(14):8092–8096.
  • Gao Y, Yu G, Luo C, Zhou P. 2012. Groundwater nitrogen pollution and assessment of its health risks: a case study of a typical village in rural-urban continuum, China. PloS One. 7(4):e33982.
  • Gejl RN, Rygaard M, Henriksen HJ, Rasmussen J, Bjerg PL. 2019. Understanding the impacts of groundwater abstraction through long-term trends in water quality. Water Res. 156:241–251.
  • Geman S, Geman D. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell. 6(6):721–741.
  • Gorsevski PV, Gessler PE, Foltz RB, Elliot WJ. 2006. Spatial prediction of landslide hazard using logistic regression and ROC analysis. Trans GIS. 10(3):395–415.
  • Goumehei E, Tolpekin V, Stein A, Yan W. 2019. Surface water body detection in polarimetric SAR data using contextual complex Wishart classification. Water Resour Res. 55(8):7047–7059.
  • Hagensieker R, Roscher R, Rosentreter J, Jakimow B, Waske B. 2017. Tropical land use land cover mapping in Pará (Brazil) using discriminative Markov random fields and multi-temporal TerraSAR-X data. Int J Appl Earth Obs Geoinf. 63:244–256.
  • He B, He J, Wang L, Zhang X, Bi E. 2019. Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: based on least squares surface fitting model. Water Res. 163:114880.
  • Hoberg T, Rottensteiner F, Feitosa RQ, Heipke C. 2015. Conditional random fields for multitemporal and multiscale classification of optical satellite imagery. IEEE Trans Geosci Remote Sensing. 53(2):659–673.
  • Hutchins MG, Abesser C, Prudhomme C, Elliott JA, Bloomfield JP, Mansour MM, Hitt OE. 2018. Combined impacts of future land-use and climate stressors on water resources and quality in groundwater and surface waterbodies of the upper Thames river basin, UK. Sci Total Environ. 631–632:962–986.
  • Inglada J, Giros A. 2004. On the possibility of automatic multisensor image registration. IEEE Trans Geosci Remote Sensing. 42(10):2104–2120.
  • Jadaliha M, Choi J. 2013. Fully Bayesian simultaneous localization and spatial prediction using Gaussian Markov random fields (GMRFs). In: 2013 American Control Conference. IEEE. p. 4592–4597.
  • Jang WS, Engel B, Yeum CM. 2020. Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning. Environ Model Softw. 124:104602.
  • Kato Z, Pong TC, Qiang SG. 2002. Multicue MRF image segmentation: combining texture and color features. In: Object recognition supported by user interaction for service robots (Vol. 1). p. 660–663IEEE. p. 660–663.
  • Kato Z, Zerubia J. 2012. Markov random fields in image segmentation. Collection foundation and trends in signal processing. https://hal.archives-ouvertes.fr/hal-00737058.
  • Khan S, Shahnaz M, Jehan N, Rehman S, Shah MT, Din I. 2013. Drinking water quality and human health risk in Charsadda district, Pakistan. J Cleaner Prod. 60:93–101.
  • Khosravi K, Sartaj M, Tsai FTC, Singh VP, Kazakis N, Melesse AM, Prakash I, Bui DT, Pham BT. 2018. A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Total Environ. 642:1032–1049.
  • Kihumba AM, Longo JN, Vanclooster M. 2016. Modelling nitrate pollution pressure using a multivariate statistical approach: the case of Kinshasa groundwater body, Democratic Republic of Congo. Hydrogeol J. 24(2):425–437.
  • Kim G-B, Lee J-Y, Lee K-K. 2004. Construction of lineament maps related to groundwater occurrence with ArcView and AvenueTM scripts. Comput Geosci. 30(9–10):1117–1126.
  • Klaas DK, Imteaz MA, Arulrajah A. 2017. Development of groundwater vulnerability zones in a data-scarce eogenetic karst area using head-guided zonation and particle-tracking simulation methods. Water Res. 122:17–26.
  • Knoll L, Breuer L, Bach M. 2019. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning. Sci Total Environ. 668:1317–1327.
  • Knoll L, Breuer L, Bach M. 2020. Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning. Environ Res Lett. 15(6):064004.
  • Kornejady A, Ownegh M, Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena. 152:144–162.
  • Lahjouj A, El Hmaidi A, Bouhafa K, Boufala MH. 2020. Mapping specific groundwater vulnerability to nitrate using random forest: case of Sais basin, Morocco. Model Earth Syst Environ. 6(3):1451–1466.
  • Lake IR, Lovett AA, Hiscock KM, Betson M, Foley A, Sünnenberg G, Evers S, Fletcher S. 2003. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J Environ Manage. 68(3):315–328.
  • Lasagna M, De Luca DA, Franchino E. 2016. Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci. 75(3):240.
  • Li Z, Shi W, Lu P, Yan L, Wang Q, Miao Z. 2016. Landslide mapping from aerial photographs using change detection-based Markov random field. Remote Sens Environ. 187:76–90.
  • Liang YR, Wang ZZ, Guo JH. 2014. Reservoir lithology stochastic simulation based on Markov random fields. J Cent South Univ. 21(9):3610–3616.
  • Lipovetsky S. 2009. Pareto 80/20 law: derivation via random partitioning. Int J Math Educ Sci Technol. 40(2):271–277.
  • Lobry S, Denis L, Williams B, Fjørtoft R, Tupin F. 2019. Water detection in SWOT HR images based on multiple Markov random fields. IEEE J Sel Top Appl Earth Observ Remote Sens. 12(11):4315–4326.
  • Lombardo L, Mai PM. 2018. Presenting logistic regression-based landslide susceptibility results. Eng Geol. 244:14–24.
  • Lu H, Ma X. 2020. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere. 249:126169.
  • Lu P, Qin Y, Li Z, Mondini AC, Casagli N. 2019. Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sens Environ. 231:111235.
  • Mahvi AH, Nouri J, Babaei AA, Nabizadeh R. 2005. Agricultural activities impact on groundwater nitrate pollution. Int J Environ Sci Technol. 2(1):41–47.
  • Mas JF, Soares Filho B, Pontius RG, Farfán Gutiérrez M, Rodrigues H. 2013. A suite of tools for ROC analysis of spatial models. IJGI. 2(3):869–887.
  • Matiatos I. 2016. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci Total Environ. 541:802–814.
  • Narany TS, Aris AZ, Sefie A, Keesstra S. 2017. Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia. Sci Total Environ. 599–600:844–853.
  • Niemeyer J, Rottensteiner F, Soergel U. 2013. Classification of urban LiDAR data using conditional random field and random forests. In: Joint Urban Remote Sensing Event 2013. IEEE. p. 139–142.
  • Nolan BT, Fienen MN, Lorenz DL. 2015. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. J Hydrol. 531:902–911.
  • Ostad-Ali-Askari K, Shayannejad M, Ghorbanizadeh-Kharazi H. 2017. Artificial neural network for modeling nitrate pollution of groundwater in marginal area of Zayandeh-rood River, Isfahan, Iran. KSCE J Civ Eng. 21(1):134–140.
  • Ouedraogo I, Defourny P, Vanclooster M. 2019. Application of random forest regression and comparison of its performance to multiple linear regression in modeling groundwater nitrate concentration at the African continent scale. Hydrogeol J. 27(3):1081–1098.
  • Peña-Haro S, Pulido-Velazquez M, Llopis-Albert C. 2011. Stochastic hydro-economic modeling for optimal management of agricultural groundwater nitrate pollution under hydraulic conductivity uncertainty. Environ Model Softw. 26(8):999–1008.
  • Pontius RG, Jr, Schneider LC. 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ. 85(1–3):239–248.
  • Potts RB. 1952. Some generalized order-disorder transformations. In: Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press. p. 106–109.
  • Pradhan B, Lee S. 2010. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ Model Softw. 25(6):747–759.
  • Prates MO, Dey DK, Willig MR, Yan J. 2015. Transformed Gaussian Markov random fields and spatial modeling of species abundance. Spatial Stat. 14:382–399.
  • Rahmati O, Choubin B, Fathabadi A, Coulon F, Soltani E, Shahabi H, Mollaefar E, Tiefenbacher J, Cipullo S, Ahmad BB, et al. 2019. Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and uneec methods. Sci Total Environ. 688:855–866.
  • Rahmati O, Kornejady A, Samadi M, Deo RC, Conoscenti C, Lombardo L, Dayal K, Taghizadeh-Mehrjardi R, Pourghasemi HR, Kumar S, et al. 2019. PMT: New analytical framework for automated evaluation of geo-environmental modelling approaches. Sci Total Environ. 664:296–311.
  • Rahmati O, Melesse AM. 2016. Application of Dempster-Shafer theory, spatial analysis and remote sensing for groundwater potentiality and nitrate pollution analysis in the semi-arid region of Khuzestan, Iran. Sci Total Environ. 568:1110–1123.
  • Ransom KM, Nolan BT, Traum JA, Faunt CC, Bell AM, Gronberg JAM, Wheeler DC, Rosecrans CZ, Jurgens B, Schwarz GE, et al. 2017. A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA. Sci Total Environ. 601:1160–1172.
  • Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O. 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inform. 8(4):867–883.
  • Rodriguez-Galiano V, Chica-Olmo M. 2012. Land cover change analysis of a Mediterranean area in Spain using different sources of data: multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Appl Geogr. 35(1–2):208–218.
  • Rodriguez-Galiano V, Mendes MP, Garcia-Soldado MJ, Chica-Olmo M, Ribeiro L. 2014. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci Total Environ. 476–477:189–206.
  • Rodriguez-Galiano VF, Luque-Espinar JA, Chica-Olmo M, Mendes MP. 2018. Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods. Sci Total Environ. 624:661–672.
  • Rokhshad AM, Siuki AK, Yaghoobzadeh M. 2021. Evaluation of a machine-based learning method to estimate the rate of nitrate penetration and groundwater contamination. Arab J Geosci. 14(1):1–11.
  • Roques C, Bour O, Aquilina L, Dewandel B, Leray S, Schroetter JM, Longuevergne L, Le Borgne T, Hochreutener R, Labasque T, et al. 2014. Hydrological behavior of a deep sub-vertical fault in crystalline basement and relationships with surrounding reservoirs. J Hydrol. 509:42–54.
  • Sajedi-Hosseini F, Malekian A, Choubin B, Rahmati O, Cipullo S, Coulon F, Pradhan B. 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Sci Total Environ. 644:954–962.
  • Sakizadeh M, Ahmadpour E. 2016. Geological impacts on groundwater pollution: a case study in Khuzestan Province. Environ Earth Sci. 75(1):88.
  • Sarafian R, Kloog I, Just AC, Rosenblatt JD. 2019. Gaussian Markov random fields versus linear mixed models for satellite-based PM2. 5 Assessment: evidence from the Northeastern USA. Atmos Environ. 205:30–35.
  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF. 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biol. 11(10):1577–1593.
  • Serio F, Miglietta PP, Lamastra L, Ficocelli S, Intini F, De Leo F, De Donno A. 2018. Groundwater nitrate contamination and agricultural land use: a grey water footprint perspective in Southern Apulia Region (Italy). Sci Total Environ. 645:1425–1431.
  • Shuai P, Cardenas MB, Knappett PS, Bennett PC, Neilson BT. 2017. Denitrification in the banks of fluctuating rivers: the effects of river stage amplitude, sediment hydraulic conductivity and dispersivity, and ambient groundwater flow. Water Resour Res. 53(9):7951–7967.
  • Singh P, Kato Z, Zerubia J. 2014. A multilayer markovian model for change detection in aerial image pairs with large time differences. In: 2014 22nd International Conference on Pattern Recognition. IEEE. p. 924–929.
  • Solberg AHS, Taxt T, Jain AK. 1996. A Markov random field model for classification of multisource satellite imagery. IEEE Trans Geosci Remote Sensing. 34(1):100–113.
  • Soto-Pinto C, Arellano-Baeza A, Sánchez G. 2013. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Comput Geosci. 57:93–103.
  • Swets JA. 2014. Signal detection theory and ROC analysis in psychology and diagnostics: collected papers. New York: Psychology Press.
  • Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C. 2008. A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell. 30(6):1068–1080.
  • Sziranyi T, Shadaydeh M. 2014. Segmentation of remote sensing images using similarity-measure-based fusion-MRF model. IEEE Geosci Remote Sensing Lett. 11(9):1544–1548.
  • Taufiq A, Effendi AJ, Iskandar I, Hosono T, Hutasoit LM. 2019. Controlling factors and driving mechanisms of nitrate contamination in groundwater system of Bandung Basin, Indonesia, deduced by combined use of stable isotope ratios, CFC age dating, and socioeconomic parameters. Water Res. 148:292–305.
  • Twarakavi NK, Kaluarachchi JJ. 2005. Aquifer vulnerability assessment to heavy metals using ordinal logistic regression. Ground Water. 43(2):200–214.
  • Wang F, Wu Y, Zhang Q, Zhang P, Li M, Lu Y. 2012. Unsupervised change detection on SAR images using triplet Markov field model. IEEE Geosci Remote Sens Lett. 10(4):697–701.
  • Wang H, Wang X, Wellmann JF, Liang RY. 2018. Bayesian stochastic soil modeling framework using Gaussian Markov random fields. ASCE-ASME J Risk Uncertainty Eng Syst, Part A: Civ Eng. 4(2):04018014.
  • Wang J, Chen F, Dong J, Feng D. 2013. Multi-camera tracking via online discriminative feature and multi-cue MRF. In: Proceedings of 2013 Chinese Intelligent Automation Conference. Springer, Berlin, Heidelberg, p. 847–856.
  • Ward MH, Jones RR, Brender JD, De Kok TM, Weyer PJ, Nolan BT, Villanueva CM, Van Breda SG. 2018. Drinking water nitrate and human health: an updated review. IJERPH. 15(7):1557.
  • Wellen C, Kamran-Disfani AR, Arhonditsis GB. 2015. Evaluation of the current state of distributed watershed nutrient water quality modeling. Environ Sci Technol. 49(6):3278–3290.
  • Wick K, Heumesser C, Schmid E. 2012. Groundwater nitrate contamination: factors and indicators. J Environ Manage. 111:178–186.
  • Xu Y, Choi J, Dass S, Maiti T. 2013. Efficient Bayesian spatial prediction with mobile sensor networks using Gaussian Markov random fields. Automatica. 49(12):3520–3530.
  • Xue D, Pang F, Meng F, Wang Z, Wu W. 2015. Decision-tree-model identification of nitrate pollution activities in groundwater: a combination of a dual isotope approach and chemical ions. J Contam Hydrol. 180:25–33.
  • Yang N, Winkel LH, Johannesson KH. 2014. Predicting geogenic arsenic contamination in shallow groundwater of South Louisiana, United States. Environ Sci Technol. 48(10):5660–5666.
  • Yi S, Pavlovic V. 2015. Multi-cue structure preserving mrf for unconstrained video segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. p. 3262–3270.
  • Zhai Y, Zhao X, Teng Y, Li X, Zhang J, Wu J, Zuo R. 2017. Groundwater nitrate pollution and human health risk assessment by using HHRA model in an agricultural area, NE China. Ecotoxicol Environ Saf. 137:130–142.
  • Zhang Y, Dore AJ, Ma L, Liu XJ, Ma WQ, Cape JN, Zhang FS. 2010. Agricultural ammonia emissions inventory and spatial distribution in the North China Plain. Environ Pollut. 158(2):490–501.
  • Zhao X, Chen W. 2020. Optimization of computational intelligence models for landslide susceptibility evaluation. Remote Sens. 12(14):2180.
  • Zhou H, Wang R. 2007. Unsupervised multi-spectral image segmentation using watershed transform and MRF model by integrating multi-cue information. In: MIPPR 2007: Multispectral Image Processing (Vol. 6787). International Society for Optics and Photonics. p. 67872A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.