421
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

ArcWaT: a model-based cell-by-cell GIS toolbox for estimating wave transformation during storm surge events

, , , , &
Pages 10532-10555 | Received 24 Sep 2021, Accepted 30 Jan 2022, Published online: 09 Feb 2022

References

  • Abroug I, Abcha N, Jarno A, Marin F. 2020. Laboratory study of non-linear wave-wave interactions of extreme focused waves in the nearshore zone. Nat Hazards Earth Syst Sci. 20(12):3279–3291.
  • Andriolo U. 2019. Nearshore wave transformation domains from video imagery. J Mar Sci Eng. 7(6):186.
  • ArcGIS. 2018. Version Version 10.6. Redlands, CA: Environmental Systems Research Insitute, Inc.
  • Atan R, Finnegan W, Nash S, Goggins J. 2019. The effect of arrays of wave energy converters on the nearshore wave climate. Ocean Eng. 172:373–384.
  • Atkinson J, Roberts H, Hagen SC, Zou S, Bacopoulos, P, Medeiros, SC, Weishampel, JF, Cobell Z. 2011. Deriving frictional parameters and performing historical validation for an adcirc storm surge model of the Florida gulf coast. Florida Watershed. 4:22–27.
  • Avila LA, Cangialosi J. 2011 Aug 21–28. Tropical Cyclone Report Hurricane Irene (AL092011). Florida: National Hurricane Center; p. 20–25.
  • Baron-Hyppolite C, Lashley CH, Garzon JL, Miesse T, Ferreira CM, Bricker JD. 2018. Comparison of implicit and explicit vegetation representations in SWAN hindcasting wave dissipation by coastal wetlands in Chesapeake Bay. Geosciences (Switzerland). 9(1):8.
  • Berman M. 2011 Aug 27. Hurricane Irene aftermath: Dispatches from Virginia, Maryland, Delaware and the District. The Washington Post. https://www.washingtonpost.com/blogs/post_now/post/hurricane-irene-aftermath-dispatches-from-virginia-marland-delaware-and-the-district/2011/08/28/gIQArS2gkJ_blog.html,A4.
  • Booij N, Ris RC, Holthuijsen LH. 1999. A third-generation wave model for coastal regions 1. Model description and validation. J Geophys Res. 104(C4):7649–7666.
  • Cantero-Chinchilla FN, Bergillos RJ, Castro-Orgaz O. 2020. Nearshore coastal flow processes using weighted-averaged equations. Ocean Eng. 211:107480.
  • Cao X, Zheng J, Shi J, Zhang C, Zhang J. 2021. Evaluating the influence of slope limiters on nearshore wave simulation in a non-hydrostatic model. Appl Ocean Res. 112:102683.
  • Cassalho F, Miesse TW, de Lima ADS, Khalid A, Ferreira CM, Sutton-Grier AE. 2021. Coastal wetlands exposure to storm surge and waves in the Albemarle-Pamlico Estuarine System during Extreme Events. Wetlands. 41(4):1–19.
  • Chesapeake Conservancy. 2018. High-resolution land use. (https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/land-use-data-project/).
  • Coastal National Elevation Database (CoNED) Project. 2018. Hurricane Sandy Region - Topobathymetric Elevation Model of Chesapeake Bay. https://www.usgs.gov/core-science-systems/eros/coned/science/hurricane-sandy-region-topobathymetric-elevation-model?qt-science_center_objects=0#qt-science_center_objects
  • Cyriac R. 2018. Wind and Plume driven circulation in estuarine systems. North Carolina: North Carolina State University.
  • de Lima ADS, Khalid A, Miesse T, Cassalho F, Ferreira C, Scherer MEG, Bonetti J. 2020. Hydrodynamic and waves response during storm surges on the Southern Brazilian coast: a hindcast study. Water. 12(12):3538.
  • Dewitz J. 2019. National Land Cover Database (NLCD) 2016 Products: U.S. Geological Survey data release. https://doi.org/10.5066/P96HHBIE.
  • Dietrich CD, Proft JM, Howard MT, Wells G, Fleming JG, Luettich RA, Jr, et al. 2013. Computational challenges in the geosciences. Vol. 156. New York: Springer. https://doi.org/10.1007/978-1-4614-7434-0.
  • Dietrich JC, Zijlema M, Westerink JJ, Holthuijsen LH, Dawson C, Luettich RA, Jensen RE, Smith JM, Stelling GS, Stone GW. 2011. Modeling hurricane waves and storm surge using integrally-coupled, scalable computations. Coastal Eng. 58(1):45–65.
  • Egbert GD, Erofeeva SY. 2002. Efficient inverse modeling of Barotropic Ocean tides. J Atmos Oceanic Technol. 19(2):183–204.
  • Eldeberky Y, Battjes JA. 1996. Spectral modeling of wave breaking: application to Boussinesq equations. J Geophys Res. 101(C1):1253–1264.
  • EMRL (Environmental Modeling Research Laboratory). 1998. Surface-water modeling system, version 5.0, reference manual and tutorials, SMS V 5.0. Provo, UT: Brigham Young University.
  • Ferreira CM, Olivera F, Irish JL. 2014. Arc stormsurge: integrating hurricane storm surge modeling and GIS. J Am Water Resour Assoc. 50(1):219–233.
  • Foster-Martinez MR, Alizad K, Hagen SC. 2020. Estimating wave attenuation at the coastal land margin with a GIS toolbox. Environ Modell Software. 132:104788.
  • Garzon JL, Ferreira CM, Padilla-Hernandez R. 2018. Evaluation of weather forecast systems for storm surge modeling in the Chesapeake Bay. Ocean Dyn. 68(1):91–107.
  • Garzon JL, Maza M, Ferreira CM, Lara JL, Losada IJ. 2019. Wave attenuation by spartina saltmarshes in the Chesapeake Bay under storm surge conditions. J Geophys Res Oceans. 124(7):5220–5243.
  • GEBCO Compilation Group. 2020. GEBCO 2020 Grid (https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9)
  • Goldsmith TM, Hornig KS, Hatchette JY. 2012. Final report on Hurricane Irene.
  • Guisado-Pintado E. 2020. Shallow water wave modelling in the nearshore (SWAN). In: Derek W. T. Jackson, Andrew D. Short, editors. Sandy beach morphodynamics. The Netherlands: Elsevier Ltd; p. 391–419. https://doi.org/10.1016/b978-0-08-102927-5.00017-5.
  • Haddad J, Lawler S, Ferreira CM. 2016. Assessing the relevance of wetlands for storm surge protection: a coupled hydrodynamic and geospatial framework. Nat Hazards. 80(2):839–861. Springer Netherlands:.
  • Hasselmann K. 1974. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorol. 6(1–2):107–127.
  • Holthuijsen LH, Herman A, Booij N. 2003. Phase-decoupled refraction-diffraction for spectral wave models. Coastal Eng . 49(4):291–305.
  • Hoque MA, Perrie W, Solomon SM. 2020. Application of SWAN model for storm generated wave simulation in the Canadian Beaufort Sea. J Ocean Eng Sci. 5(1):19–34.
  • Horta J, Oliveira S, Moura D, Ferreira Ó. 2018. Nearshore hydrodynamics at pocket beaches with contrasting wave exposure in southern Portugal. Estuarine Coastal Shelf Sci. 204:40–55.
  • Joevivek VJ, Chandrasekar N, Jayangondaperumal R, Thakur VC, Purniema KS. 2019. An interpretation of wave refraction and its influence on foreshore sediment distribution. Acta Oceanol Sin. 38(5):151–160.
  • Khalid A, Ferreira CM. 2020. Advancing real-time flood prediction in large estuaries: iFLOOD a fully coupled surge-wave automated web-based guidance system. Environ Modell Software. 131:104748.
  • Kuiry SN, Ding Y, Wang SSY. 2014. Numerical simulations of morphological changes in barrier islands induced by storm surges and waves using a supercritical flow model. Front Struct Civ Eng. 8(1):57–68.
  • Lai YG, Kim HS. 2020. A near-shore linear wave model with the mixed finite volume and finite difference unstructured mesh method. Fluids. 5(4):199.
  • Li M, Zhang F, Barnes S, Wang X. 2020. Assessing storm surge impacts on coastal inundation due to climate change: case studies of Baltimore and Dorchester County in Maryland. Nat Hazards. 103(2):2561–2588.
  • Madsen OS, Poon Y-K, Graber HC. 1988. Spectral wave attenuation by bottom friction: theory. In: 21st International Conference on Coastal Engineering; p. 492–504.
  • Malheiros Miranda I, Toldo EE, da Fontoura Klein AH, Strauss D, Vieira da Silva G. 2020. The role of cuspate spits on wave attenuation and energy redistribution in a coastal lagoon, Lagoa dos Patos, Brazil. Geo-Mar Lett. 40(6):1069–1086.
  • Martins K, Blenkinsopp CE, Power HE, Bruder B, Puleo JA, Bergsma EWJ. 2017. High-resolution monitoring of wave transformation in the surf zone using a LiDAR scanner array. Coastal Eng. 128:37–43.
  • Mei CC. 2020. Tidal diffraction by a small island or cape, and tidal power from a coastal barrier. J Fluid Mech. 897:A13.
  • Mercadé Ruiz P, Ferri F, Kofoed JP. 2017. Water-wave diffraction and radiation by multiple three-dimensional bodies over a mild-slope bottom. Ocean Eng. 143:163–176.
  • Miles JW. 1957. On the generation of surface waves by shear flows. J Fluid Mech. 3(2):185.
  • National Geophysical Data Center. 1999. U.S. Coastal Relief Model - Southeast Atlantic. National Geophysical Data Center. NOAA. https://doi.org/10.7289/V53R0QR5
  • Onea F, Rusu L, Carp GB, Rusu E. 2021. Wave farms impact on the coastal processes—a case study area in the Portuguese nearshore. J Mar Sci Eng. 9(3):262–220. AG:.
  • Pandey S, Rao AD. 2019. Impact of approach angle of an impinging cyclone on generation of storm surges and its interaction with tides and wind waves. J Geophys Res Oceans. 124(11):7643–7660.
  • Pezerat M, Bertin X, Martins K, Mengual B, Hamm L. 2021. Simulating storm waves in the nearshore area using spectral model: current issues and a pragmatic solution. Ocean Modell. 158:101737. Elsevier Ltd.:.
  • Phillips OM. 1957. On the generation of waves by turbulent wind. J Fluid Mech. 2(05):417. Cambridge University Press:.
  • Rezaie AM, Ferreira CM, Walls M, Chu Z. 2021. Natural hazards review quantifying the impacts of storm surge, sea level rise and potential reduction and changes in Wetlands in Coastal Areas of the Chesapeake Bay Region. Nat Hazards Rev. 22(4):04021044.
  • Roberts KJ, Pringle WJ, Westerink JJ. 2019. OceanMesh2D 1.0: MATLAB-based software for two-dimensional unstructured mesh generation in coastal ocean modeling. Geosci Model Dev. 12(5):1847–1868.
  • Sanford LP, Gao J. 2018. Influences of wave climate and sea level on shoreline erosion rates in the Maryland Chesapeake Bay. Estuaries Coasts. 41(S1):19–37.
  • Shi J, Zheng J, Zhang C, Joly A, Zhang W, Xu P, Sui T, Chen T. 2019. A 39-year high resolution wave hindcast for the Chinese coast: model validation and wave climate analysis. Ocean Eng. 183:224–235.
  • Short AD. 2012. Coastal processes and beaches. Nat Educ Knowl. 3:1–18.
  • Smith JM, Bryant MA, Wamsley TV. 2016. Wetland buffers: numerical modeling of wave dissipation by vegetation. Earth Surf Process Landforms. 41(6):847–854.
  • Sous D, Forsberg PL, Touboul J, Nogueira GG. 2021. Laboratory experiments of surf zone dynamics under on- and offshore wind conditions. Coastal Eng. 163:103797.
  • Sutton-Grier A, Gittman R, Arkema K, Bennett R, Benoit J, Blitch S, Burks-Copes K, Colden A, Dausman A, DeAngelis B, et al. 2018. Investing in natural and nature-based infrastructure: Building better along our coasts. Sustainability (Switzerland. 10(2):523–511.
  • Swain J, Umesh PA, Bhaskaran PK, Balchand AN. 2021. Simulation of nearshore waves using boundary conditions from WAM and WWIII–a case study. ISH J Hydraul Eng. 27(sup1):506–520.
  • Tang J, Li Q, Meng X, Shen Y, Zhang M. 2018. Numerical modeling of coastal waves and nearshore currents on adaptive quadtree grids. J Waterway Port Coastal Ocean Eng. 144(5):04018011.
  • Teodoro JD, Nairn B. 2020. Understanding the knowledge and data landscape of climate change impacts and adaptation in the Chesapeake Bay region: a systematic review. Climate. 8(4):58–17.
  • Ti Z, Wei K, Qin S, Li Y, Mei D. 2018. Numerical simulation of wave conditions in nearshore island area for sea-crossing bridge using spectral wave model. Adv Struct Eng. 21(5):756–768. SAGE Publications Inc.:.
  • VD, Silva G, T, Murray D. Strauss 2018. Longshore wave variability along non-straight coastlines. Estuarine Coastal Shelf Sci. 212:318–328.
  • Wang P, Stone G, Pepper D. 1998. A preliminary assessment of hydrodynamic and morphodynamic responses to detached, segmented breakwaters, South Central Louisiana. J Coastal Res. 26(201):201–207.
  • Williams LL, Lück-Vogel M. 2020. Comparative assessment of the GIS based bathtub model and an enhanced bathtub model for coastal inundation. J Coast Conserv. 24(2):1–15.
  • Xie X, Li M, Ni W. 2018. Roles of wind-driven currents and surface waves in sediment resuspension and transport during a tropical storm. J Geophys Res Oceans. 123(11):8638–8654.
  • Xue L, Li X, Shi B, Yang B, Lin S, Yuan Y, Ma Y, Peng Z. 2021. Pattern-regulated wave attenuation by salt marshes in the Yangtze Estuary, China. Ocean Coastal Manage . 209:105686. Elsevier Ltd.
  • Yin K, Xu S, Zhao Q, Huang W, Yang K, Guo M. 2020. Effects of land cover change on atmospheric and storm surge modeling during typhoon event. Ocean Eng. 199:106971.
  • Zhang C, Zhang Q, Zheng J, Demirbilek Z. 2017. Parameterization of nearshore wave front slope. Coastal Eng. 127:80–87.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.