157
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Geostatistical, deterministic and interpolation with barriers methods—a comparative analysis for interpolating soil NPK

& ORCID Icon
Pages 3721-3742 | Received 22 Dec 2021, Accepted 03 Apr 2022, Published online: 27 Apr 2022

References

  • Aguilar FJ, Agüera F, Aguilar MA, Carvajal F. 2005. Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm Eng Remote Sensing. 71(7):805–816.
  • Ahmad AY, Saleh IA, Balakrishnan P, Al-Ghouti MA. 2021. Comparison GIS-based interpolation methods for mapping groundwater quality in the state of Qatar. Groundw Sustain Dev. 13:100573.
  • Antal A, Guerreiro PM, Cheval S. 2021. Comparison of spatial interpolation methods for estimating the precipitation distribution in Portugal. Theor Appl Climatol. 145(3):1–14.
  • Baines O, Wilkes P, Disney M. 2020. Quantifying urban forest structure with open-access remote sensing data sets. Urban for Urban Green. 50:126653.
  • Banwasi R, Singh SK, Kumar N, Sahu KK. 2020. Assessing the accuracy of geostatistical techniques for mapping soil macronutrients on basaltic landscape of central India. Int J Chem Stud. 8(1):1014–1019.
  • Bogunovic I, Mesic M, Zgorelec Z, Jurisic A, Bilandzija D. 2014. Spatial variation of soil nutrients on sandy-loam soil. Soil Tillage Res. 144:174–183.
  • Budiman JS, Al-Amri NS, Chaabani A, Elfeki AM. 2021. Geostatistical based framework for spatial modeling of groundwater level during dry and wet seasons in an arid region: a case study at Hadat Ash-Sham experimental station, Saudi Arabia. Stoch Environ Res Risk Assess. 2021:1–15.
  • Champagne AS, McFaull SR, Thompson W, Bang F. 2020. Original quantitative research-Surveillance from the high ground: sentinel surveillance of injuries and poisonings associated with cannabis. Health Promot Chronic Dis Prev Can. 40(5-6):184–192.
  • Chen Y, Shan X, Jin X, Yang T, Dai F, Yang D. 2016. A comparative study of spatial interpolation methods for determining fishery resources density in the Yellow Sea. Acta Oceanol Sin. 35(12):65–72.
  • Dag O, Asar O, Ilk O. 2014. A methodology to implement Box-Cox transformation when no covariate is available. Commun Stat B Simul Comput. 43(7):1740–1759.
  • Dorosti S, Ghoushchi SJ, Sobhrakhshankhah E, Ahmadi M, Sharifi A. 2020. Application of gene expression programming and sensitivity analyses in analyzing effective parameters in gastric cancer tumor size and location. Soft Comput. 24(13):9943–9964.
  • Ferrara G, Parente C. 2021. Adaptation of the Global Geoid Model EGM2008 on Campania region (Italy) based on geodetic network points. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLVI-4/W4-2021:145–150.
  • Fox EW, Ver Hoef JM, Olsen AR. 2020. Comparing spatial regression to random forests for large environmental data sets. PLoS One 15(3):e0229509.
  • Gao B, Hu M, Wang J, Xu C, Chen Z, Fan H, Ding H. 2020. Spatial interpolation of marine environment data using P-MSN. In. J Geogr Inf Syst. 34(3):577–603.
  • Gaonkar S, Rodrigues BF. 2021. Arbuscular mycorrhizal fungal status in mangroves of Pichavaram Forest, Tamil Nadu, India. Trop. Ecol. 62(4):1–11.
  • Goovaerts P. 2010. Combining areal and point data in geostatistical interpolation: applications to soil science and medical geography. Math Geosci. 42(5):535–554.
  • Gribov A, Krivoruchko K. 2020. Empirical Bayesian kriging implementation and usage. Sci Total Environ. 722:137290.
  • Hengl T, Heuvelink GB, Stein A. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 120(1-2):75–93.
  • Ho YC, Lim BC, Lim JW. 2020. Agricultural runoff and treatment methods. In: Handbook of research on resource management for pollution and waste treatment. Malaysia: IGI Global; p. 550–575.
  • Ikechukwu MN, Ebinne E, Idorenyin U, Raphael NI. 2017. Accuracy assessment and comparative analysis of IDW, spline and kriging in spatial interpolation of landform (topography): an experimental study. JGIS. 09(03):354–371.
  • Jamil M. 2020. Statistical and in-field challenges involved in quantifying crop nitrogen use efficiency (NUE) and spatial soil fertility in Central Alberta [Master's thesis]. Canada: University of Alberta.
  • John K, Afu SM, Isong IA, Aki EE, Kebonye NM, Ayito EO, Chapman PA, Eyong MO, Penížek V. 2021. Mapping soil properties with soil-environmental covariates using geostatistics and multivariate statistics. Int J Environ Sci Technol. 18(11):3327–3342.
  • Kamarudin KN, Tomita M, Kondo K, Abe SS. 2020. Spatial variation and distribution of soil micronutrients relative to macronutrients in Mt. Wakakusa Grassland (central-western Japan). Landscape Ecol Eng. 16(4):335–343.
  • Kavitha C, Sujatha MP, Tata R. 2019. Spatial variations in soil micronutrients as influenced by agro ecological conditions in a tropical humid region. Trop Ecol. 60(3):362–378.
  • Khan M, Islam M, Salam ABA, Ray T. 2021. Spatial variability and geostatistical analysis of soil properties in the diversified cropping regions of Bangladesh using geographic information system techniques. Appl Environ Soil Sci. 2021:1–19.
  • Kingsley J, Afu SM, Isong IA, Chapman PA, Kebonye NM, Ayito EO. 2021. Estimation of soil organic carbon distribution by geostatistical and deterministic interpolation methods: a case study of the south eastern soils of Nigeria. Environ Eng Manage J. 20(7):1077–1085.
  • Laekemariam F, Kibret K, Mamo T, Shiferaw H. 2018. Accounting spatial variability of soil properties and mapping fertilizer types using geostatistics in Southern Ethiopia. Commun Soil Sci Plant Anal. 49(1):124–137.
  • Lee JK, Randolph JC, Lulla KP, Helfert MR. 1993. Interfacing remote sensing and geographic information systems for global environmental change research. 1993:7–18.
  • Li J, Wan H, Shang S. 2020. Comparison of interpolation methods for mapping layered soil particle-size fractions and texture in an arid oasis. Catena. 190:104514.
  • Liu H, Jezek KC, O'Kelly ME. 2001. Detecting outliers in irregularly distributed spatial data sets by locally adaptive and robust statistical analysis and GIS. Int J Geogr Inf Syst. 15(8):721–741.
  • Mandal S, Choudhury BU, Satpati L. 2020. Data article on soil site suitability analysis using geostatistical and visualization techniques for selected winter crops in Sagar island, India. Data Brief. 31:105930.
  • Maruo K, Ishii R, Yamaguchi Y, Gosho M. 2021. bcmixed: a package for median inference on longitudinal data with the box–cox transformation. R J. 13(2):153.
  • Meng Q, Liu Z, Borders BE. 2013. Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation methods. Cartogr Geogr Inf Sci. 40(1):28–39.
  • Nellis MD. 1994. Technology in geographic education: reflections and future directions. J Geog. 93(1):36–39.
  • Nourzadeh M, Mahdian MH, Malakouti MJ, Khavazi K. 2012. Investigation and prediction spatial variability in chemical properties of agricultural soil using geostatistics. Arch Agron Soil Sci. 58(5):461–475.
  • Oliver MA, Webster R. 1990. Kriging: a method of interpolation for geographical information systems. Int J Geogr Inf Syst. 4(3):313–332.
  • Pereira-Santos M, Santos JYGD, Carvalho GQ, Santos DBD, Oliveira AM. 2019. Epidemiology of vitamin D insufficiency and deficiency in a population in a sunny country: Geospatial meta-analysis in Brazil. Crit Rev Food Sci Nutr. 59(13):2102–2109.
  • Pirani JF, Modarres R. 2020. Geostatistical and deterministic methods for rainfall interpolation in the Zayandeh Rud basin, Iran. Hydrol Sci J. 65(16):2678–2692.
  • Qu M, Li W, Zhang C. 2014. County-scale spatial variability of macronutrient availability ratios in paddy soils. Appl Environ Soil Sci. 2014:1–10.
  • Rasool T, Dar AQ, Wani MA. 2020. Quantification of spatial variability of soil physical properties in a Lesser Himalayan Sub-Basin of India. Eurasian Soil Sc. 53(3):362–376.
  • Robinson TP, Metternicht G. 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Comput Electron Agric. 50(2):7–108.
  • Schirrmann M, Domsch H. 2011. Sampling procedure simulating on-the-go sensing for soil nutrients. Z Pflanzenernähr Bodenk. 174(2):333–343.
  • Schulte RP, Creamer RE, Donnellan T, Farrelly N, Fealy R, O’Donoghue C, O’huallachain D. 2014. Functional land management: a framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ Sci Policy 38:45–58.
  • Sahu B, Ghosh AK. 2021. Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Reg. 26:e00413.
  • Skidmore AK, Ryan PJ, Dawes W, Short D, O'loughlin E. 1991. Use of an expert system to map forest soils from a geographical information system. Int J Geogr Inf Syst. 5(4):431–445.
  • Srivastava PK, Han D, Gupta M, Mukherjee S. 2012. Integrated framework for monitoring groundwater pollution using a geographical information system and multivariate analysis. Hydrol Sci J. 57(7):1453–1472.
  • Stewart FA, Rogerson PA. 1993. GIS and spatial analytical problems. Int J Geogr Inf Syst. 7(1):3–19.
  • Tamburi V, Shetty A, Shrihari S. 2021. Spatial variability of vertisols nutrients in the Deccan plateau region of north Karnataka. Environ Dev Sustain. 23(2):2910–2923.
  • Thiesen S, Ehret U. 2021. Assessing local and spatial uncertainty with nonparametric geostatistics. Stoch EnvironRes Risk Assess. 36(1):173–199.
  • Usowicz B, Lipiec J, Łukowski M, Słomiński J. 2021. Improvement of spatial interpolation of precipitation distribution using cokriging incorporating rain-gauge and satellite (SMOS) soil moisture data. Remote Sensing 13(5):1039.
  • Wu Q, Zhou W, Chen D, Cai A, Ao J, Huang Z. 2020. Optimizing soil and fertilizer phosphorus management according to the yield response and phosphorus use efficiency of sugarcane in southern China. J Soil Sci Plant Nutr. 20(4):1655–1664.
  • Xie B, Jia X, Qin Z, Zhao C, Shao MA. 2020. Comparison of interpolation methods for soil moisture prediction on China's Loess Plateau. Vadose Zone J. 19(1):e20025.
  • Xie Y, Chen TB, Lei M, Yang J, Guo QJ, Song B, Zhou XY. 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: accuracy and uncertainty analysis. Chemosphere 82(3):468–476.
  • Xu Y, Wang X, Bai J, Wang D, Wang W, Guan Y. 2020. Estimating the spatial distribution of soil total nitrogen and available potassium in coastal wetland soils in the Yellow River Delta by incorporating multi-source data. Ecol Indic. 111:106002.
  • Yang CS, Kao SP, Lee FB, Hung PS. 2004. Twelve different interpolation methods: a case study of Surfer 8.0. In: Proceedings of the XXth ISPRS Congress. Vol. 35. p. 778–785.
  • Yasrebi J, Saffari M, Fathi H, Karimian N, Moazallahi M, Gazni R. 2009. Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Res J Biol Sci. 4(1):93–102.
  • Yaworsky PM, Vernon KB, Spangler JD, Brewer SC, Codding BF. 2020. Advancing predictive modeling in archaeology: an evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS One 15(10):e0239424.
  • Zhu D, Cheng X, Zhang F, Yao X, Gao Y, Liu Y. 2020. Spatial interpolation using conditional generative adversarial neural networks. Int J Geogr Inf Syst. 34(4):735–758.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.