437
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Improvement of the predictive performance of landslide mapping models in mountainous terrains using cluster sampling

, , , , , , & show all
Pages 12294-12337 | Received 27 Sep 2021, Accepted 10 Apr 2022, Published online: 08 May 2022

References

  • Abraham MT, Satyam N, Lokesh R, Pradhan B, Alamri A. 2021. Factors affecting landslide susceptibility mapping: assessing the influence of different machine learning approaches, sampling strategies and data splitting. Land. 10(9):989.
  • Achour Y, Pourghasemi HR. 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front. 11(3):871–883.
  • Ahmed KS, Basharat M, Riaz MT, Sarfraz Y, Shahzad A. 2021. Geotechnical investigation and landslide susceptibility assessment along the Neelum road: a case study from Lesser Himalayas, Pakistan. Arab J Geosci. 14(11):1–19.
  • Ahmed MF, Rogers JD, Ismail EH. 2014. A regional level preliminary landslide susceptibility study of the upper Indus river basin. Eur J Remote Sens. 47(1):343–373.
  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA., 2021. GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front. 12(2):857–876.
  • Ali S, Biermanns P, Haider R, Reicherter K. 2019. Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat Hazards Earth Syst Sci. 19(5):999–1022.
  • Al-Najjar HH, Pradhan B. 2021. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front. 12(2):625–637.
  • Althuwaynee OF, Pradhan B. 2014. An alternative technique for landslide inventory modeling based on spatial pattern characterization. In: Abdul Rahman A, Boguslawski P, Anton F, Said MN, Omar KM, editors. Geoinformation for informed decisions. Switzerland: Springer International Publishing; p. 35–48.
  • Althuwaynee OF, Pradhan B, Lee S. 2012. Application of an evidential belief function model in landslide susceptibility mapping. Comput Geosci. 44:120–135.
  • Althuwaynee OF, Pradhan B, Lee S. 2016. A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. Int J Remote Sens. 37(5):1190–1209.
  • Azarafza M, Azarafza M, Akgün H, Atkinson PM, Derakhshani R. 2021. Deep learning-based landslide susceptibility mapping. Sci Rep. 11(1):1–16.
  • Balogun A-L, Rezaie F, Pham QB, Gigović L, Drobnjak S, Aina YA, Panahi M, Yekeen ST, Lee S., 2021. Spatial prediction of landslide susceptibility in western Serbia using hybrid support vector regression (SVR) with GWO, BAT and COA algorithms. Geosci Front. 12(3):101104.
  • Basharat M, Qasim M, Shafique M, Hameed N, Riaz MT, Khan MR., 2018. Regolith thickness modeling using a GIS approach for landslide distribution analysis NW. J Mt Sci. 15(11):2466–2479.
  • Basharat M, Riaz MT, Jan MQ, Xu C, Riaz S. 2021. A review of landslides related to the 2005 Kashmir Earthquake: implication and future challenges. Nat Hazards. 108(1):1–30.
  • Basharat M, Rohn J, Baig MS, Khan MR. 2014. Spatial distribution analysis of mass movements triggered by the 2005 Kashmir earthquake in the Northeast Himalayas of Pakistan. Geomorphology. 206:203–214.
  • Benz SA, Blum P. 2019. Global detection of rainfall-triggered landslide clusters. Nat Hazards Earth Syst Sci. 19(7):1433–1444.
  • Bertolini G, Guida M, Pizziolo M. 2005. Landslides in Emilia-Romagna region (Italy): strategies for hazard assessment and risk management. Landslides. 2(4):302–312.
  • Bianchini S, Cigna F, Righini G, Proietti C, Casagli N. 2012. Landslide hotspot mapping by means of persistent scatterer interferometry. Environ Earth Sci. 67(4):1155–1172.
  • Biasutti M, Seager R, Kirschbaum DB. 2016. Landslides in West Coast metropolitan areas: The role of extreme weather events. Weather Clim Extremes. 14:67–79.
  • Bonham-Carter GF, Agterberg FP, Wright DF. 1989. Weights of evidence modeling: a new approach to mapping mineral potential. In Agterberg FP, Bonham-Carter GF, editors. Statistical Applications in the Earth Sciences. Geological Survey of Canada, Paper no. 89-9; p. 171–183.
  • Bonham-Carter GF. 1994. Geographic information systems for geoscientists: modelling with GIS. Comput Meth Geosci. 13:398.
  • Brabb EE. 1991. The world landslide problem. Episodes J Int Geosci. 14(1):52–61.
  • Braun A, Urquia ELG, Lopez RM, Yamagishi H. 2019. Landslide susceptibility mapping in Tegucigalpa, Honduras, using data mining methods. In IAEG/AEG Annual Meeting Proceedings, San Francisco, California, 2018-Volume 1. Cham: Springer, p. 207–215.
  • Breiman L. 2001. Random Forests. Mach Learn. 45(1):5–32.
  • Breiman L, Cutler A. 2018. Package ‘randomForest’. 17. Date/Publication 2018-03-22).
  • Breiman L, Last M, Rice J. 2003. Random forests: finding quasars. In: Statistical challenges in astronomy. New York: Springer-Verlag, p. 243–254.
  • Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT. 2020. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188:104426.
  • Bui DT, Tuan TA, Klempe H, Pradhan B, Revhaug I. 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides. 13(2):361–378.
  • Bui DT, Tuan TA, Hoang ND, Thanh NQ, Nguyen DB, Van Liem N, Pradhan B. 2017. Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides. 14(2):447–458.
  • Bzdok D, Altman N, Krzywinski M. 2018. Statistics versus machine learning. Nat Methods. 15(4):233–234.
  • Canoglu MC, Aksoy H, Ercanoglu M. 2019. Integrated approach for determining spatio temporal variations in the hydrodynamic factors as a contributing parameter in landslide susceptibility assessments. Bull Eng Geol Environ. 78(5):3159–3174.
  • Cao J, Zhang Z, Du J, Zhang L, Song Y, Sun G. 2020. Multi-geohazards susceptibility mapping based on machine learning – a case study in Jiuzhaigou. Nat Hazards. 102(3):851–871.
  • Carranza JM. 2009. Geochemical anomaly and mineral prospectivity mapping in GIS. In M. Hale, editor, Handbook of exploration and environmental geochemistry. Amsterdam, Netherlands: Elsevier, vol. 11, p. 351.
  • Catani F, Lagomarsino D, Segoni S, Tofani V. 2013. Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues. Nat Hazards Earth Syst Sci. 13(11):2815–2831.
  • Catani F, Tofani V, Lagomarsino D. 2016. Spatial patterns of landslide dimension: a tool for magnitude mapping. Geomorphology. 273:361–373.
  • Chang KT, Merghadi A, Yunus AP, Pham BT, Dou J. 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep. 9(1):1–21.
  • Chen T, Guestrin C. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining; p. 785–794. doi:10.1145/2939672.2939785.
  • Chen JS, Huang HY, Hsu CY. 2020. A kNN based position prediction method for SNS places. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/9783030-42058-1_22.
  • Chen W, Panahi M, Tsangaratos P, Shahabi H, Ilia I, Panahi S, Li S, Jaafari A, Ahmad BB. 2019. Applying population-based evolutionary algorithms and a neuro-fuzzy system or modeling landslide susceptibility. Catena. 172:212–231.
  • Chen W, Xie X, Peng J, Wang J, Duan Z, Hong H. 2017. GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models. Geomat Nat Haz Risk. 8(2):950–973.
  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J. 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena. 151:147–160.
  • Chen W, Zhang S, Li R, Shahabi H. 2018. Performance evaluation of the gis-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling. Sci Total Environ. 644:1006–1018.
  • Chowdhuri I, Pal SC, Chakrabortty R, Malik S, Das B, Roy P. 2021. Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya. Nat Hazards. 107(1):697–722.
  • Clark PJ, Evans FC. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology. 35(4):445–453.
  • Conoscenti C, Rotigliano E, Cama M, Caraballo-Arias NA, Lombardo L, Agnesi V. 2016. Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily. Italy. Geomorphology. 261:222–235.
  • Costanzo D, Rotigliano E, Irigaray C, Jiménez-Perálvarez JD, Chacón J. 2012. Factors selection in landslide susceptibility modelling on large scale following the gis matrix method: application to the river Beiro basin (Spain). Nat Hazards Earth Syst Sci. 12(2):327–340.
  • DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44(3):837–845.
  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Althuwaynee OF. 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling Narayanghat road section in Nepal Himalaya. Nat Hazards. 65(1):135–165.
  • Dou J, Yamagishi H, Zhu Z, Yunus AP, Chen CW. 2018. TXT-tool 1.081-6.1 A comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) models for GIS-based spatial predicting landslides at a regional scale. In Landslide dynamics: ISDR-ICL landslide interactive teaching tools. Cham: Springer, p. 139–151.
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen C-W, Han Z, Pham BT. 2020. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. 17(3):641–658.
  • Dou J, Yunus AP, Tien Bui D, Merghadi A, Sahana M, Zhu Z, Chen CW, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346.
  • Dou J, Yunus AP, Tien Bui D, Sahana M, Chen C-W, Zhu Z, Wang W, Pham BT. 2019. Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall -induced landslide susceptibility using the LiDAR DEM. Remote Sens. 11(6):638.
  • Dou J, Yunus AP, Xu Y, Zhu Z, Chen C-W, Sahana M, Khosravi K, Yang Y, Pham BT. 2019. Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Nat Hazards. 97(2):579–609. 4.
  • Emami SN, Yousefi S, Pourghasemi HR, Tavangar S, Santosh M. 2020. A comparative study on machine learning modeling for mass movement susceptibility mapping (a case study of Iran). Bull Eng Geol Environ. 79(10):5291–5308.
  • Fan X, Scaringi G, Korup O, West AJ, Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE, et al. 2019. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys. 57(2):421–503.
  • Fontan D. 1998. [Regional geological mapping, metamorphic P-T-t paths evaluation and ore potential assessment in Neelum Valley (Azad Kashmir, NE Pakistan]. [PhD thesis]. Belgium: Universite Catholique de Louvain-La-Neuve.
  • Fontan D, Schouppe M, Hunziker CJ, Martinotti G, Verkaeren J. 2000. Metamorphic evolution, 40Ar-39Ar chronology and tectonic model for the Neelum valley, Azad Kashmir, NE Pakistan. In Khan MA, editors, Tectonics of the Nanga Parbat syntaxis and the Western Himalaya: Geological Society, London, Special Publication, 170, p. 431–453. https://doi.org/10.1144/GSL.SP.2000.170.01.23.
  • Gaidzik K, Ramírez-Herrera MT. 2021. The importance of input data on landslide susceptibility mapping. Sci Rep. 11(1):1–14.
  • Ghazanfar M, Baig MS, Chaudhry MN. 1983. Geology of Tithwal Kel area Neelum Valley, Azad Jammu and Kashmir. Kashmir J Geol. 1:1–10.
  • Gorum T, Fan X, van Westen CJ, Huang RQ, Xu Q, Tang C, Wang G. 2011. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology. 133(3-4):152–167.
  • Gomez H, Kavzoglu T. 2005. Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol. 78(1-2):11–27.
  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali MJNH. 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth Syst Sci. 6(1):115–131.
  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F. 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology. 72(1-4):272–299.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang K. 2012. Landslide inventory maps: New tools for an old problem. Earth-Science Rev. 112(1-2):42–66.
  • Heckmann T, Gegg K, Gegg A, Becht M. 2014. Sample size matters: investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Nat Hazards Earth Syst Sci. 14(2):259–278.
  • Hjort J, Marmion M. 2008. Effects of sample size on the accuracy of geomorphological models. Geomorphology. 102(3-4):341–350.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu A-X, Chen W, Ahmad BB. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena. 163:399–413.
  • Hong H, Miao Y, Liu J, Zhu AX. 2019. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena. 176:45–64.
  • Hosmer DW, Lemeshow S. 2000. Applied logistic regression. New York, Chichester: Wiley-Interscience, John Wiley & Sons Inc. https://doi.org/10.1016/j.earscirev.2018.03.001.
  • Hussin HY, Zumpano V, Reichenbach P, Sterlacchini S, Micu M, van Westen C, Bălteanu D. 2016. Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology. 253:508–523.
  • Hutchinson JN. 1988. Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In Proc., Fifth International Symposium on Landslides, 1988. Lausanne, AA.
  • Jaboyedoff M, Oppikofer T, Abellán A, Derron M-HH, Loye A, Metzger R, Pedrazzini A, Abellan A, Derron M-HH, Loye A, et al. 2012. Use of LIDAR in landslide investigations: a review. Nat Hazards. 61(1):5–28.
  • Jadoon IA, Hinderer M, Kausar AB, Qureshi AA, Baig MS, Basharat M, Frisch W. 2015. Structural interpretation and geo-hazard assessment of a locking line: 2005 Kashmir Earthquake, western Himalayas. Environ Earth Sci. 73(11):7587–7602.
  • Jarman D. 2006. Large rock slope failures in the Highlands of Scotland: characterisation, causes and spatial distribution. Eng Geol. 83(1-3):161–182.
  • Jensen DR, Ramirez DE. 2013. Revision: variance inflation in regression. Adv Dec Sci. 2013:1–15.
  • Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S. 2018. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat Hazards Risk. 9(1):49–69.
  • Kamp U, Growley BJ, Khattak GA, Owen LA. 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology. 101(4):631–642.
  • Kavzoglu T, Colkesen I, Sahin EK. 2019. Machine learning techniques in landslide susceptibility mapping: a survey and a case study. In Landslides: theory, practice and modelling. Berlin, Germany: Springer, p. 283–301.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439.
  • Kavzoglu T, Sahin EK, Colkesen I. 2015. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng Geol. 192:101–112.
  • Keefer DK. 1984. Landslides caused by earthquakes. Geol Soc Am Bull. 95(4):406.
  • Khan MA, Basharat M, Riaz MT, Sarfraz Y, Farooq M, Khan AY, Pham QB, Ahmed S, Shahzad A. 2021. An integrated geotechnical and geophysical investigation of a catastrophic landslide in the Northeast Himalayas of Pakistan. Geol J. 1:19.
  • Khosravi K, Shahabi H, Pham BT, Adamowski J, Shirzadi A, Pradhan B, Dou J, Ly HB, Gróf G, Ho HL, et al. 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J Hydrol. 573:311–323.
  • Kirschbaum D, Stanley T, Zhou Y. 2015. Spatial and temporal analysis of a global landslide catalog. Geomorphology. 249:4–15.
  • Kornejady A, Ownegh M, Rahmati O, Bahremand A. 2018. Landslide susceptibility assessment using three bivariate models considering the new topo-hydrological factor: HAND. Geocarto Int. 33(11):1155–1185.
  • Kuhn M. 2015. A Short Introduction to the caret Package. R Found Stat Comput. 1:1–10.
  • Kutner MH, Nachtsheim CJ, Neter J, Li W. 2005. Applied linear statistical models (Vol. 5). Boston: McGraw-Hill Irwin.
  • Lacoste A, Loncke L, Chanier F, Bailleul J, Vendeville BC, Mahieux G. 2009. Morphology and structure of a landslide complex in an active margin setting: The Waitawhiti complex, North Island, New Zealand. Geomorphology. 109(3-4):184–196.
  • Lai JS, Chiang SH, Tsai F. 2019. Exploring influence of sampling strategies on event based landslide susceptibility modeling. ISPRS Int J Geo-Inf. 8(9):397.
  • Landis JR, Koch GG 1977. The measurement of observer agreement for categorical data. Biometrics. 159–174.
  • Lee S. 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens. 26(7):1477–1491.
  • Lee S, Lee MJ, Jung HS. 2017. Data mining approaches for landslide susceptibility mapping in Umyeonsan, Seoul, South Korea. Appl Sci. 7(7):683.
  • Lee S, Pradhan B. 2007. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides. 4(1):33–41.
  • Li Y, Liu X, Han Z, Dou J. 2020. Spatial proximity -based geographically weighted regression model for landslide susceptibility assessment: a case study of Qingchuan Area, China. Appl. Sci. 10(3):1107.
  • Lin YP, Chu HJ, Wu CF. 2010. Spatial pattern analysis of landslide using landscape metrics and logistic regression: a case study in Central Taiwan. Hydrol Earth Syst Sci Discuss. 7(3):3423–3451.
  • Liu X, Su P, Li Y, Xu R, Zhang J, Yang T, Guo X, Jiang N. 2021. Spatial patterns and scaling distributions of earthquake-induced landslides—a case study of landslides in watersheds along Dujiangyan-Wenchuan highway. Front Earth Sci. 9:196.
  • Lu P, Bai S, Casagli N. 2014. Investigating spatial patterns of persistent scatterer interferometry point targets and landslide occurrences in the Arno River Basin. Remote Sens. 6(8):6817–6843.
  • Lu P, Casagli N, Catani F, Tofani V. 2012. Persistent scatterers interferometry hotspot and cluster analysis (PSI-HCA) for detection of extremely slow-moving landslides. Int J Remote Sens. 33(2):466–489.
  • Lucchese LV, de Oliveira GG, Pedrollo OC. 2021. Investigation of the influence of nonoccurrence sampling on landslide susceptibility assessment using Artificial Neural Networks. Catena. 198:105067.
  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P. 2004. Landslide inventories and their statistical properties. Earth Surf Process Landforms. 29(6):687–711.
  • Malik RH, Schouppe M, Fontan D, Verkaeren J, Martinotti G, Ahmed KS, Qureshi S. 1996. Geology of the Neelum valley, district Muzaffarabad, Azad Kashmir, Pakistan. Univ Peshawar Geol Bull. 29:91–111.
  • Marjanovic M, Bajat B, Kovacevic M. 2009. Landslide susceptibility assessment with machine learning algorithms. In 2009 International Conference on Intelligent Networking and Collaborative Systems, pp. 273–278.
  • Martelloni G, Segoni S, Fanti R, Catani F. 2012. Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides. 9(4):485–495.
  • Meunier P, Hovius N, Haines JA. 2008. Topographic site effects and the location of earthquake induced landslides. Earth Planet Sci Lett. 275(3-4):221–232.
  • Merghadi A, Abderrahmane B, Tien Bui D. 2018. Landslide susceptibility assessment at Mila Basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods. IJGI. 7(7):268.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B., 2020. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth Sci Rev. 207:103225.
  • Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. 2020. Misc functions of the Department of Statistics, Probability Theory Group (Formerly: E1071). TU Wien. R package version 1.7-2.: e1071.
  • Miner A, Vamplew P, Windle DJ, Flentje P, Warner P. 2010. A comparative study of various data mining techniques as applied to the modeling of landslide susceptibility on the Bellarine Peninsula, Victoria, Australia.
  • Moayedi H, Mehrabi M, Mosallanezhad M, Rashid ASA, Pradhan B. 2019. Modification of landslide susceptibility mapping using optimized PSO-ANN technique. Eng Comput. 35(3):967–984.
  • Orme AR. 2002. Shifting paradigms in geomorphology: the fate of research ideas in an educational context. Geomorphology. 47(2-4):325–342.
  • Ortiz JAV, Martínez-Graña AM. 2018. A neural network model applied to landslide susceptibility analysis (Capitanejo, Colombia). Geomatics Natural Hazards Risk. 9(1):1106–1128. doi:10.1080/19475705.2018.1513083
  • Panahi M, Gayen A, Pourghasemi HR, Rezaie F, Lee S. 2020. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Sci Total Environ. 741:139937.
  • Park S, Kim J. 2019. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl. Sci. 9(5):942.
  • Petley D, Dunning S, Rosser N, Kausar AB. 2006. Incipient landslides in the Jhelum Valley, Pakistan following the 8th October 2005 earthquake. In: Marui H, editor, Disaster mitigation of debris flows, slope failures and landslides, frontiers of science series. Tokyo: Universal Academy.
  • Petschko H, Brenning A, Bell R, Goetz J, Glade T. 2014. Assessing the quality of landslide susceptibility maps–case study Lower Austria. Nat Hazards Earth Syst Sci. 14(1):95–118.
  • Pham BT, Bui DT, Prakash I, Dholakia MB. 2017. Hybrid integration of multilayer perceptron neural networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena. 149:52–63.
  • Pham BT, Bui DT, Prakash I, Dholakia M. 2016. Rotation forest fuzzy rule-based classifer ensemble for spatial prediction of landslides using GIS. Nat Hazards. 83(1):97–127.
  • Pham BT, Pradhan B, Tien Bui D, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw. 84:240–250.
  • Pham BT, Prakash I, Dou J, Singh SK, Trinh PT, Tran HT, Le TM, Van Phong T, Khoi DK, Shirzadi A, et al. 2019. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 0:1–25.
  • Pham BT, Tien Bui D, Pourghasemi HR, Indra P, Dholakia M. 2017. Landslide susceptibility assessment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol. 128(1-2):255–273.
  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, et al. 2021. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics Nat Hazards Risk. 12(1):1741–1777.
  • Pokharel B, Althuwaynee OF, Aydda A, Kim SW, Lim S, Park HJ. 2021. Spatial clustering and modelling for landslide susceptibility mapping in the north of the athmandu Valley, Nepal. Landslides. 18(4):1403–1419.
  • Pourghasemi HR, Rahmati O. 2018. Prediction of the landslide susceptibility: which algorithm, which precision? Catena. 162:177–192.
  • Pourghasemi HR, Gayen A, Panahi M, Rezaie F, Blaschke T. 2019. Multi-hazard probability assessment and mapping in Iran. Sci Total Environ. 692:556–571.
  • Pourghasemi HR, Sadhasivam N, Amiri M, Eskandari S, Santosh M. 2021. Landslide susceptibility assessment and mapping using state-of-the art machine learning techniques. Nat Hazards. 108(1):1291–1316.
  • Pradhan A, Kim YT. 2014. Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek. Nat Hazards. 72(2):1189–1217.
  • Pradhan B, Lee S. 2010. Regional landslide susceptibility analysis using back-propagation neural networks model at Cameron Highland, Malaysia. Landslides. 7(1):13–30.
  • Raines GL. 1999. Evaluation of weights of evidence to predict epithermal-gold deposits in the Great Basin of the Western United States. Nat Resour Res. 8(4):257–276.
  • Rault C, Robert A, Marc O, Hovius N, Meunier P. 2019. Seismic and geologic controls on spatial clustering of landslides in three large earthquakes. Earth Surf Dynam. 7(3):829–839.
  • Riaz MT, Basharat M, Hameed N, Shafique M, Luo J. 2018. A data-driven approach to landslide-susceptibility mapping in mountainous terrain: case study from the Northwest Himalayas, Pakistan. Nat Hazards Rev. 19(4):05018007.
  • Samia J, Temme A, Bregt AK, Wallinga J, Stuiver J, Guzzetti F, Ardizzone F, Rossi M. 2018. Implementing landslide path dependency in landslide susceptibility modelling. Landslides. 15(11):2129–2144.
  • Samia J, Temme A, Bregt A, Wallinga J, Guzzetti F, Ardizzone F, Rossi M. 2017. Do landslides follow landslides? Insights in path dependency from a multi-temporal landslide inventory. Landslides. 14(2):547–558.
  • Schouppe M, Fontan D, Verkaeren J, Laduron D, Martinotti G. 1993. Regional geological mapping and ore potential assessment in Neelum valley, Azad Kashmir (Pakistan): Periodical Report, 1993, EEC CII-05 71-M(GDF), 27. p
  • Soma AS, Kubota T, Mizuno H. 2019. Optimization of causative factors using logistic regression and artificial neural network models for landslide susceptibility assessment in Ujung Loe Watershed, South Sulawesi Indonesia. J Mt Sci. 16(2):383–401.
  • Spiegelhalter DJ, Knill‐Jones RP. 1984. Statistical and knowledge‐based approaches to clinical decision‐support systems, with an application in gastroenterology. J Royal Stat Soc Series A (General). 147(1):35–58.
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest. Eng. Geol. 281:105972.
  • Tanyas H, Rossi M, Alvioli M, van Westen CJ, Marchesini I. 2019. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology. 327:126–146.
  • Thai B, Pradhan B, Tien D, Prakash I, Dholakia MB. 2016. A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environ Model Softw. 84:240–250.
  • Tianqi C, He T, Benesty M. 2015. Xgboost: extreme gradient boosting; R Package Version 0.3-1; Technical Report, pp. 1–4. http://cran.fhcrc.org/web/packages/xgboost/vignettes/xgboost.pdf.
  • Tonini M, Pecoraro G, Romailler K, Calvello M. 2020. Spatio-temporal cluster analysis of recent Italian landslides. Georisk: Assess Manag Risk Eng Syst Geohazards. 1–19. doi:10.1080/17499518.2020.1861634
  • Tonini M, Abellan A. 2014. Rockfall detection from terrestrial LiDAR point clouds: a clustering approach using R. J Spatial Inform Sci. (8):95–110. doi:10.5311/JOSIS.2014.8.123
  • Tonini M, Pedrazzini A, Penna I, Jaboyedoff M. 2014. Spatial pattern of landslides in Swiss Rhone Valley. Nat Hazards. 73(1):97–110.
  • Torizin J, Fuchs M, Awan AA, Ahmad I, Akhtar SS, Sadiq S, Razzak A, Weggenmann D, Fawad F, Khalid N, et al. 2017. Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan. Nat Hazards. 89(2):757–784.
  • Trauth MH, Bookhagen B, Marwan N, Strecker MR. 2003. Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeogr Palaeoclimatol Palaeoecol. 194(1-3):109–121.
  • Tsangaratos P, Ilia I. 2016. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. Catena. 145:164–179.
  • Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L. 2006. Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes (Belgium). Geomorphology. 76(3-4):392–410.
  • Wang Z, Liu Q, Liu Y. 2020. Mapping landslide susceptibility using machine learning algorithms and GIS: A case study in Shexian County, Anhui Province, China. Symmetry. 12(12):1954.
  • Witt A, Malamud BD, Rossi M, Guzzetti F, Peruccacci S. 2010. Temporal correlations and clustering of landslides. Earth Surf Process Landforms. 35(10):1138–1156.
  • Xiao C, Tian Y, Shi W, Guo Q, Wu L. 2010. A new method of pseudo absence data generation in landslide susceptibility mapping with a case study of Shenzhen. Sci China Technol Sci. 53(S1):75–84.
  • Xiao T, Yin K, Yao T, Liu S. 2019. Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning models in Wanzhou County, Three Gorges Reservoir, China. Acta Geochim. 38(5):654–669.
  • Xiong J, Sun M, Zhang H, Cheng W, Yang Y, Sun M, Cao Y, Wang J. 2019. Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments. Nat Hazards Earth Syst Sci. 19(3):629–653.
  • Yilmaz I. 2010. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environ Earth Sci. 60(3):505–519.
  • Yilmaz I, Ercanoglu M. 2019. Landslide inventory, sampling and effect of sampling strategies on landslide susceptibility/hazard modelling at a glance. In Natural hazards GIS based spatial modeling using data mining techniques. Cham: Springer, p. 205–224.
  • Yilmaz I. 2009. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat Turkey). Comput. Geosci. 35(6):1125–1138.
  • Youssef AM, Pourghasemi HR. 2021. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci Front. 12(2):639–655.
  • Yunus AP, Fan X, Tang X, Jie D, Xu Q, Huang R. 2020. Decadal vegetation succession from MODIS reveals the spatio -temporal evolution of post -seismic landsliding after the 2008 Wenchuan earthquake. Remote Sens Environ. 236:111476.
  • Zhang K, Wu X, Niu R, Yang K, Zhao L. 2017. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 76(11):1–20.
  • Zhu AX, Miao Y, Liu J, Bai S, Zeng C, Ma T, Hong H. 2019. A similarity-based approach to sampling absence data for landslide susceptibility mapping using data-driven methods. Catena. 183:104188.
  • Zhu AX, Miao Y, Yang L, Bai S, Liu J, Hong H. 2018. Comparison of the presence only method and presence-absence method in landslide susceptibility mapping. Catena. 171:222–233.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.