461
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Application of machine learning algorithms in landslide susceptibility mapping, Kali Valley, Kumaun Himalaya, India

, &
Pages 16846-16871 | Received 31 Mar 2022, Accepted 29 Aug 2022, Published online: 16 Sep 2022

References

  • Abu El-Magd SA, Ali SA, Pham QB. 2021. Spatial modeling and susceptibility zonation of landslides using random forest, naïve Bayes, and K-nearest neighbor in complicated terrain. Earth Sci Inform. 14(3):1227–1243.
  • Aguirre-Gutiérrez J, Carvalheiro LG, Polce C, Van Loon EE, Raes N, Reemer M, Biesmeijer JC. 2013. Fit-for-purpose: species distribution model performance depends on evaluation criteria–Dutch hoverflies as a case study. PLoS One. 8(5):e63708.
  • Ahmed B, Forte R. 2016. Landslide risk zoning applying Kohonen’s self-organizing map neural network technique. Dhaka, Bangladesh: Department of Urban and Regional Planning, Jahangirnagar University.
  • Akgun A. 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides. 9(1):93–106.
  • Aktas H, San BT. 2019. Landslide susceptibility mapping using an automatic sampling algorithm based on two level random sampling. Comput Geosci. 133:104329.
  • Aleotti P, Chowdhury R. 1999. Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Env. 58(1):21–44.
  • Al-Najjar HH, Pradhan B. 2021. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front. 12(2):625–637.
  • Anbalagan R. 1992. Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol. 32(4):269–277.
  • Avand M, Janizadeh S, Naghibi SA, Pourghasemi HR, Khosrobeigi Bozchaloei S, Blaschke T. 2019. A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water. 11(10):2076.
  • Ayalew L, Yamagishi H. 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology. 65(1–2):15–31.
  • Azor A, Keller EA, Yeats RS. 2002. Geomorphic indicators of active fold growth: south Mountain–Oak Ridge anticline, Ventura basin, southern California. Geol Soc Am Bull. 114(6):745–753.
  • Beguería S. 2006. Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards. 37(3):315–329.
  • Benchelha S, Aoudjehane HC, Hakdaoui M, El Hamdouni R, Mansouri H, Benchelha T, Alaoui M. 2019. Landslide susceptibility mapping: a comparison between logistic regression and multivariate adaptive regression spline models in the municipality of Oudka, Northern of Morocco. Int J Geotech Geol Eng. 13(5):381–393.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Budimir MEA, Atkinson PM, Lewis HG. 2015. A systematic review of landslide probability mapping using logistic regression. Landslides. 12:419–436.
  • Bugday E. 2022. A GIS based landslide susceptibility mapping using machine learning and alternative forest road routes assessment in protection forests. Šumar list (Online). 146(3–4):137–147.
  • Bugday E, Akay AE. 2019. Evaluation of forest road network planning in landslide sensitive areas by GIS-based multi-criteria decision making approaches in Ihsangazi watershed, Northern Turkey. Šumar list (Online). 143(7–8):336–336.
  • Can R, Kocaman S, Gokceoglu C. 2021. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk Dam, Turkey. Appl Sci. 11(11):4993.
  • Casadei M, Dietrich WE, Miller NL. 2003. Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surf. Process. Landf. 28:925–950.
  • Célérier J, Harrison TM, Webb AAG, Yin A. 2009. The Kumaun and Garwhal Lesser Himalaya, India: Part 1. Structure and stratigraphy. Geol Soc Am Bull. 121(9–10):1262–1280.
  • Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A. 2010. Comparing predictive capability of statistical and deterministic methods for landslide susceptibility map ping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides. 7(4):433–444.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, Association for Computing Machinery, New York, United States; p. 785–794.
  • Chen W, Peng J, Hong H, Shahabi H, Pradhan B, Liu J, Zhu A-X, Pei X, Duan Z. 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci Total Environ. 626:1121–1135.
  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J. 2017. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. CATENA. 151:147–160.
  • Chung CJ, Fabbri AG. 2003. Validation of spatial prediction models for landslide hazard mapping. Nat Hazards. 30(3):451–472.
  • Ciurleo M, Cascini L, Calvello M. 2017. A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Eng Geol. 223:71–81.
  • Constantin M, Bednarik M, Jurchescu MC, Vlaicu M. 2011. Landslide susceptibility assessment using the bivariate statistical analysis and the index of entropy in the Sibiciu Basin (Romania). Environ Earth Sci. 63(2):397–406.
  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, et al. 2014. Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ. 73(2):209–263.
  • Cui L, Chen P, Wang L, Li J, Ling H. 2021. Application of extreme gradient boosting based on grey relation analysis for prediction of compressive strength of concrete. Adv Civil Eng. 2021:1–14.
  • Dahal RK, Hasegawa S. 2008. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology. 100(3-4):429–443.
  • Das S, Sarkar S, Kanungo DP. 2022. A critical review on landslide susceptibility zonation: recent trends, techniques, and practices in Indian Himalaya. Nat Hazards. (Online) 1–50. https://doi.org/10.1007/s11069-022-05554-x
  • Dou J, Yunus AP, Bui DT, Merghadi A, Sahana M, Zhu Z, Chen CW, Khosravi K, Yang Y, Pham BT. 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ. 662:332–346.
  • El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA. 2008. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology. 96(1–2):150–173.
  • Ercanoglu M. 2005. Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Nat Hazards Earth Syst Sci. 5(6):979–992.
  • Ermini L, Catani F, Casagli N. 2005. Artificial neural networks applied to landslide susceptibility assessment. Geomorphology. 66(1–4):327–343.
  • Fookes PG, Wilson DD. 1966. The geometry of discontinuities and slope failures in Siwalik Clay. Geotechnique. 16(4):305–20.
  • Formetta G, Capparelli G, Versace P. 2016. Evaluating performance of simplified physically based models for shallow landslide susceptibility. Hydrol Earth Syst Sci. 20(11):4585–4603.
  • Goetz JN, Brenning A, Petschko H, Leopold P. 2015. Evaluating machine learning and statistical prediction techniques for landslide susceptibility modeling. Comp Geosci. 81:1–11.
  • Goetz JN, Guthrie RH, Brenning A. 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology. 129(3–4):376–386.
  • Gokceoglu C, Sonmez H, Nefeslioglu HA, Duman TY, Can T. 2005. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity. Eng Geol. 81(1):65–83.
  • Gupta V, Kumar S, Kaur R, Tandon RS. 2022. Regional scale landslide susceptibility assessment for the hilly state of Uttarakhand, NW Himalaya, India. J Earth Sys Sci. 131(1), Article 2. https://doi.org/10.1007/s12040-021-01746-4
  • Gupta V, Sah MP, Virdi NS, Bartarya SK. 1993. Landslide hazard zonation in the Upper Satluj Valley, District Kinnaur, Himachal Pradesh. J Him Geol. 4(1):81–91.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology. 31(1–4):181–216.
  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M. 2006. Estimating the quality of landslide susceptibility models. Geomorphology. 81(1–2):166–184.
  • Hadji R, Boumazbeur A e, Limani Y, Baghem M, Chouabi AeM, Demdoum A. 2013. Geologic, topographic and climatic controls in landslide hazard assessment using GIS modeling: a case study of Souk Ahras region, NE Algeria. Quat Int. 302:224–237.
  • Haigh M, Rawat JS. 2012. Landslide disasters: seeking causes–A case study from Uttarakhand, India. In: Management of mountain watersheds. Dordrecht: Springer; p. 218–253.
  • Hammond C. 2007. Geology in landslide engineering. First North American Landslide Conference; Vail, Colorado.
  • Henriques C, Zêzere JL, Marques F. 2015. The role of the lithological setting on the landslide pattern and distribution. Eng Geol. 189:17–31.
  • Hong H, Liu J, Bui DT, Pradhan B, Acharya TD, Pham BT, Zhu AX, Chen W, Ahmad BB. 2018. Landslide susceptibility mapping using J48 decision tree with AdaBoost, bagging and rotation forest ensembles in the Guangchang area (China). CATENA. 163:399–413.
  • Hong H, Liu J, Zhu AX. 2020. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci Tot Environ. 718:137231.
  • Huang F, Yin K, Huang J, Gui L, Wang P. 2017. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng Geol. 223:11–22.
  • Javidan N, Kavian A, Pourghasemi HR, Conoscenti C, Jafarian Z. 2019. Gully erosion susceptibility mapping using multivariate adaptive regression splines—replications and sample size scenarios. Water. 11(11):2319.
  • Joshi M, Pant PD. 1990. Causes and remedial measures for Rockfalls and landslides on Naina Peak, Nainital, Kumaun Himalaya, U.P., India. Mt Res Dev. 10(4):343–346.
  • Joshi A, Sah SK, Kumar P, Lal S, Devi S. 2019. Modeling of 2011 Indo Nepal earthquake and scenario earthquakes in the Kumaon Region and comparative attenuation study using PGA distribution with the Garhwal Region. Pure Appl Geophys. 176(11):4687–700.
  • Kadavi PR, Lee CW, Lee S. 2018. Application of ensemble-based machine learning models to landslide susceptibility mapping. Rem Sen. 10(8):1252.
  • Kang K, Ponomarev A, Zerkal O, Huang S, Lin Q. 2019. Shallow landslide susceptibility mapping in Sochi ski-jump area using GIS and numerical Modelling. IJGI. 8(3):148.
  • Kanungo DP, Arora MK, Sarkar S, Gupta RP. 2006. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng Geol. 85(3–4):347–366.
  • Karakas G, Can R, Kocaman S, Nefeslioglu HA, Gokceoglu C. 2020. Landslide susceptibility mapping with random forest model for Ordu, Turkey. ISPRS - Int Arch Photogram Remote Sens Spat Info Sci. XLIII-B3-2020:1229–1236.
  • Karsli FE, Atasoy M, Yalcin A, Reis S, Demir OĞ, Gokceoglu C. 2009. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Environ Monitor Assessm. 156(1):241–255.
  • Kavzoglu T, Sahin EK, Colkesen I. 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides. 11(3):425–439.
  • Keller EA, Pinter N. 1996. Active tectonics. Vol. 338. Upper Saddle River, NJ: Prentice Hall.
  • Kim JC, Lee S, Jung HS, Lee S. 2018. Landslide susceptibility mapping using random forest and boosted tree models in Pyeong-Chang, Korea. Geocarto Int. 33(9):1000–1015.
  • Kornejady A, Ownegh M, Bahremand A. 2017. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena. 152:144–162.
  • Kumar R, Anbalagan R. 2015. Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. J Earth Syst Sci. 124(2):431–448.
  • Kumar S, Gupta V. 2021. Evaluation of spatial probability of landslides using bivariate and multivariate approaches in the Goriganga valley, Kumaun Himalaya, India. Nat Hazards. 109(3):2461–2488.
  • Lee S, Choi J, Min K. 2002. Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol. 43(1–2):120–131.
  • Lee S, Dan NT. 2005. Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: focus on the relationship between tectonic fractures and landslides. Environ Geol. 48(6):778–787.
  • Lee S, Ryu JH, Kim IS. 2007. Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression, and artificial neural network models: case study of Youngin, Korea. Landslides. 4(4):327–338.
  • Lin L, Lin Q, Wang Y. 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat Hazards Earth Syst Sci. 17(8):1411–1424.
  • Manzo G, Tofani V, Segoni S, Battistini A, Catani F. 2013. GIS techniques for regional-scale landslide susceptibility assessment: the Sicily (Italy) case study. Inter J Geogr Info Sci. 27(7):1433–1452.
  • Marjanovic M, Bajat B, Kovacevic M. 2009. Landslide susceptibility assessment with machine learning algorithms. In 2009 International Conference on Intelligent Networking and Collaborative Sys., Barcelona, Spain. IEEE. p. 273–278.
  • Mejia-Navarro M, Garcia LA. 1996. Natural hazard and risk assessment using decision support systems, application: Glenwood Springs, Colorado. Environ Eng Geosci. 2(3):299–324.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev. 207:103225.
  • Micheletti N, Foresti L, Robert S, Leuenberger M, Pedrazzini A, Jaboyedoff M, Kanevski M. 2014. Machine learning feature selection methods for landslide susceptibility mapping. Math Geosci. 46(1):33–57.
  • Miner A, Vamplew P, Windle DJ, Flentje P, Warner P. 2010. A comparative study of various data mining techniques as applied to the modeling of landslide susceptibility on the Bellarine Peninsula, Victoria, Australia.
  • Nefeslioglu HA, Duman TY, Durmaz S. 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology. 94(3–4):401–418.
  • Nourani V, Pradhan B, Ghaffari H, Sharifi SS. 2014. Landslide susceptibility mapping at Zonouz Plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models. Nat Hazards. 71(1):523–547.
  • Nsengiyumva JB, Luo G, Amanambu AC, Mind’je R, Habiyaremye G, Karamage F, Ochege FU, Mupenzi C. 2019. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Sci Total Environ. 659:1457–1472.
  • Oh HJ, Lee S, Soedradjat GM. 2010. Quantitative landslide susceptibility mapping at Pemalang area, Indonesia. Environ Earth Sci. 60(6):1317–1328.
  • Ozdemir H, Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods. Environ Geol. 56(7):1405–1415.
  • Pachauri AK, Gupta PV, Chander R. 1998. Landslide zoning in a part of the Garhwal Himalayas. Environ Geol. 36(3–4):325–334.
  • Pant PD, Goel OP, Joshi M. 1992. Neotectonic movements in the Loharkhet area, District Almora, Kumaun Himalaya. J Geol Soc India. 139(3):245–253.
  • Pant PD, Luirei K. 1999. Malpa rockfalls of 18 August 1998 in the northeastern Kumaun Himalaya. J Geol Soc India. 54(4):415–420.
  • Paraskevas T, Constantinos L, Dimitrios R, Ioanna L. 2015. Landslide susceptibility assessments using the k-nearest neighbor algorithm and expert knowledge. Case study of the basin of Selinounda River, Achaia County, Greece. SafeChania. The knowledge triangle in the Civil Protection Service Center of Mediterranean Architecture, Chania, Crete, Greece; p. 10–14.
  • Park NW. 2015. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ Earth Sci. 73(3):937–949.
  • Paul SK, Bartarya SK, Rautela P, Mahajan K. 2000. Catastrophic mass movement of 1998 monsoons at Malpa in Kali Valley, Kumaun Himalaya (India). Geomorphology. 35(3–4):169–180.
  • Pedrera A, Pérez-Peña JV, Galindo-Zaldívar J, Azañón JM, Azor A. 2009. Testing the sensitivity of geomorphic indices in areas of low-rate active folding (eastern Betic Cordillera, Spain). Geomorphology. 105(3–4):218–231.
  • Pham BT, Bui DT, Pourghasemi H, Indra P, Dholakia MB. 2017. Landslide susceptibility assesssment in the Uttarakhand area (India) using GIS: a comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor Appl Climatol. 128(1–2):255–273.
  • Pham K, Kim D, Park S, Choi H. 2021. Ensemble learning-based classification models for slope stability analysis. CATENA. 196:104886.
  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, et al. 2021. A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomatics Nat Hazards Risk. 12(1):1741–1777.
  • Pourghasemi HR, Jirandeh AG, Pradhan B, Xu C, Gokceoglu C. 2013. Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. J Earth Syst Sci. 122(2):349–369.
  • Pourghasemi HR, Yansari ZT, Panagos P, Pradhan B. 2018. Analysis and evaluation of landslide susceptibility: a review on articles published during 2005–2016 (periods of 2005–2012 and 2013–2016). Arab J Geosci. 11(9):1–12.
  • Pradhan B. 2010. Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens. 38(2):301–320.
  • Pradhan B. 2013. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comp Geosci. 51:350–365.
  • Pradhan B, Sezer EA, Gokceoglu C, Buchroithner MF. 2010. Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Trans Geosci Remote Sensing. 48(12):4164–4177.
  • Rabbi MF, Hasan SM, Champa AI, AsifZaman M, Hasan MK. 2020. Prediction of liver disorders using machine learning algorithms: a comparative study. In 2020 2nd International Conference on Advanced Information and Communication Technology (ICAICT). IEEE; p. 111–116.
  • Rabby YW, Hossain MB, Abedin J. 2020. Landslide susceptibility mapping in three Upazilas of Rangamati hill district Bangladesh: application and comparison of GIS-based machine learning methods. Geocarto Int. 37(12):1–27.
  • Rahmati O, Pourghasemi HR, Zeinivand H. 2016. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto Int. 31(1):42–70.
  • Reichenbach P, Busca C, Mondini AC, Rossi M. 2014. The influence of land use change on landslide susceptibility zonation: the Briga catchment test site (Messina, Italy). Environ Manage. 54(6):1372–1384.
  • Sabokbar HF, Roodposhti MS, Tazik E. 2014. Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology. 226:15–24.
  • Sachdeva S, Bhatia T, Verma AK. 2020. A novel voting ensemble model for spatial prediction of landslides using GIS. Int J Remote Sens. 41(3):929–952.
  • Sahin EK. 2020. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl Sci. 2(7):1–17.
  • Sahin EK, Colkesen I, Kavzoglu T. 2020. A comparative assessment of canonical correlation forest, random forest, rotation forest and logistic regression methods for landslide susceptibility mapping. Geocarto Int. 35(4):341–363.
  • Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N. 2015. Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides. 12(4):773–785.
  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Geertsema M, Khosravi K, Amini A, Bahrami S, et al. 2020. Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens. 12(2):266.
  • Shahzad N, Ding X, Abbas S. 2022. A comparative assessment of machine learning models for landslide susceptibility mapping in the rugged terrain of northern Pakistan. Appl Sci. 12(5):2280.
  • Shirzadi A, Soliamani K, Habibnejhad M, Kavian A, Chapi K, Shahabi H, Chen W, Khosravi K, Thai Pham B, Pradhan B, et al. 2018. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors. 18(11):3777.
  • Sidle R, Ochiai H. 2006. Processes, prediction, and land use. Water resources monograph. Washington: American Geophys. Union.
  • Soeters R, Van Westen CJ. 1996. Slope instability recognition, analysis and zonation. In: Landslides: investigation and mitigation. Washington, DC: Transportation Research Board; National Research Council; Vol. 247; p. 129–177.
  • Solanki A, Gupta V, Bhakuni SS, Ram P, Joshi M. 2019. Geological and geotechnical characterisation of the Khotila landslide in the Dharchula region, NE Kumaun Himalaya. J Earth Syst Sci. 128(4):1–14.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using random forest. Big Earth Data. 2(2):159–178.
  • Tien Bui D, Le KTT, Nguyen VC, Le HD, Revhaug I. 2016. Tropical forest fire susceptibility mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sens. 8(4):347.
  • Tofani V, Hong Y, Singhroy V. 2014. Introduction: remote sensing techniques for landslide mapping and monitoring. In: Landslide science for a Safer Geoenvironment. Cham: Springer; p. 301–303.
  • Tsangaratos P, Ilia I, Hong H, Chen W, Xu C. 2017. Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides. 14(3):1091–1111.
  • Tseng CM, Lin CW, Hsieh WD. 2015. Landslide susceptibility analysis by means of event-based multi-temporal landslide inventories. Nat Hazards Earth Sys Sci Discussions. 3(2):1137–1173.
  • Umar Z, Pradhan B, Ahmad A, Jebur MN, Tehrany MS. 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena. 118: 124–135.
  • Valdiya KS. 1980. Geology of kumaun lesser Himalaya. Dehradun: Wadia Institute of Himalayan Geology.
  • Van Phong T, Ly HB, Trinh PT, Prakash I, Btjvjoes P. 2020. Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach. Vietnam J Earth Sci. 42(3).
  • Van Westen CJ, Rengers N, Terlien M. 1997. Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch. 86:4004–4414.
  • Van Westen CJ, Van Asch TW, Soeters R. 2006. Landslide hazard and risk zonation—why is it still so difficult. Bull Eng Geol Environ. 65(2):167–184.
  • Varnes DJ. 1978. Slope movement types and processes. Spec Rep. 176:11–33.
  • Vorpahl P, Elsenbeer H, Märker M, Schröder B. 2012. How can statistical models help to determine driving factors of landslides. Eco. Modell. 239:27–39.
  • Wang H, Zhang L, Luo H, He J, Cheung RWM. 2021. AI-powered landslide susceptibility assessment in Hong Kong. Eng Geol. 288:106103.
  • Wu Y, Ke Y, Chen Z, Liang S, Zhao H, Hong H. 2020. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA. 187:104396.
  • Yeon YK, Han JG, Ryu KH. 2010. Landslide susceptibility mapping in Injae, Korea, using a decision tree. Eng Geol. 116(3–4):274–283.
  • Yilmaz C, Topal T, Süzen ML. 2012. GIS-based landslide susceptibility mapping using bivariate statistical analysis in Devrek (Zonguldak-Turkey). Environ Earth Sci. 65(7):2161–2178.
  • Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci. 61(4):821–836.
  • Youssef AM, Pourghasemi HR, Pourtaghi ZS, Al-Katheeri MM. 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides. 13(5):839–856.
  • Zhang K, Wu X, Niu R, Yang K, Zhao L. 2017. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ Earth Sci. 76(11):1–20.
  • Zhang Y, Ge T, Tian W, Liou YA. 2019. Debris flow susceptibility mapping using machine-learning techniques in Shigatse area, China. Remote Sens. 11(23):2801.
  • Zhao B, Li W, Wang Y, Lu J, Li X. 2019. Landslides triggered by the Ms 6.9 Nyingchi earthquake, China (18 November 2017): analysis of the spatial distribution and occurrence factors. Landslides. 16(4):765–776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.