346
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Mapping snow depth and spatial variability using SFM photogrammetry of UAV images over rugged mountainous regions of the Western Himalaya

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 17260-17287 | Received 18 Apr 2022, Accepted 16 Sep 2022, Published online: 14 Oct 2022

References

  • Adams MS, Bühler Y, Fromm R. 2018. Multitemporal accuracy and precision assessment of unmanned aerial system photogrammetry for slope‐scale snow depth maps in alpine terrain. Pure Appl Geophys. 175(9):3303–3324.
  • Avanzi F, Bianchi A, Cina A, De Michele C, Maschio P, Pagliari D, Passoni D, Pinto L, Piras M, Rossi L, et al. 2018. Centimetric accuracy in snow depth using unmanned aerial system photogrammetry and a multistation. Remote Sens. 10(5):765.
  • Awasthi S, Kumar S, Thakur PK, Jain K, Kumar A. 2021. Snow depth retrieval in North-Western Himalayan region using pursuit-monostatic TanDEM-X datasets applying polarimetric synthetic aperture radar interferometry based inversion Modelling. Int J Remote Sens. 42(8):2872–2897.
  • Bühler Y, Adams MS, Bösch R, Stoffel A. 2016. Mapping snow depth in alpine terrain with unmanned aerial systems (UAS): potential and limitations. Cryosphere. 10(3):1075–1088.
  • Bühler Y, Marty M, Egli L, Veitinger J, Jonas T, Thee P, Ginzler C. 2015. Snow depth mapping in high-alpine catchments using digital photogrammetry. Cryosphere. 9(1):229–243.
  • Carrivick JL, Smith MW, Quincey DJ. 2016. Structure from motion in the geosciences. Hoboken, NJ: Wiley Online Library. doi:10.1002/9781118895818.
  • Che T, Li X, Jin R, Armstrong R, Zhang T. 2008. Snow depth derived from passive microwave remote-sensing data in China. Ann Glaciol. 49:145–154. doi:10.3189/172756408787814690.
  • Che T, Li X, Jin R, Huang C. 2014. Assimilating passive microwave remote sensing data into a land surface model to improve the estimation of snow depth. Remote Sens Environ. 143:54–63.
  • Cimoli E, Marcer M, Vandecrux B, Bøggild CE, Williams G, Simonsen SB. 2017. Application of low‐cost UASs and digital photogrammetry for high‐resolution snow depth mapping in the Arctic. Remote Sens. 9(11):1144.
  • Dai L, Che T, Wang J, Zhang P. 2012. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China. Remote Sens Environ 127:14–29.
  • Das I, Sarwade RN. 2008. Snow depth estimation over north-western Indian Himalaya using AMSR-E. Int J Remote Sens. 29(14):4237–4248.
  • Datt P, Das RK, Garg RK. 2004. Comparative study of Snow and Meteorological data from Manual and Automatic observations. In Proceedings of International Symposium on Snow Monitoring and Avalanches (ISSMA-2004), Manali (HP), India, p. 525–529.
  • De Michele C, Avanzi F, Passoni D, Barzaghi R, Pinto L, Dosso P, Ghezzi A, Gianatti R, Della Vedova G. 2016. Using a fixed‐wing UAS to map snow depth distribution: An evaluation at peak accumulation. Cryosphere. 10(2):511–522.
  • Deschamps-Berger C, Gascoin S, Berthier E, Deems J, Gutmann E, Dehecq A, Shean D, Dumont M. 2020. Snow depth mapping from stereo satellite imagery in mountainous terrain: evaluation using airborne laser-scanning data. Cryosphere. 14(9):2925–2940.
  • Dressler KA, Fassnacht SR, Bales RC. 2006. A comparison of snow telemetry and snow course measurements in the Colorado River basin. J Hydrometeorol. 7(4):705–712.
  • Eberhard LA, Sirguey P, Miller A, Marty M, Schindler K, Stoffel A, Bühler Y. 2021. Intercomparison of photogrammetric platforms for spatially continuous snow depth mapping. Cryosphere. 15(1):69–94.
  • Elder K, Dozier J, Michaelsen J. 1991. Snow accumulation and distribution in an alpine watershed. Water Resour Res. 27(7):1541–1552.
  • Elder K, Rosenthal W, Davis RE. 1998. Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrol Process. 12(10–11):1793–1808.
  • Fassnacht SR, Brown KSJ, Blumberg EJ, López Moreno JI, Covino TP, Kappas M, Huang Y, Leone V, Kashipazha AH. 2018. Distribution of snow depth variability. Front Earth Sci. 12(4):683–692.
  • Fonstad MA, Dietrich JY, Courville BC, Jensen JL, Carbonneau PE. 2013. Topographic structure from motion: a new development in photogrammetric measurement. Earth Surf Process Landforms. 38(4):421–430.
  • Foppa N, Stoffel A, Meister R. 2007. Synergy of in situ and space borne observation for snow depth mapping in the Swiss Alps. Int J Appl Earth Obs Geoinf. 9(3):294–310.
  • Foster JL, Hall DK, Kelly REJ, Chiu L. 2009. Seasonal snow extent and snow mass in South America using SMMR and SSM/I passive microwave data (1979–2006). Remote Sens Environ. 113(2):291–305.
  • Gaffey AC, Bhardwaj A. 2020. Applications of unmanned aerial vehicles in cryosphere: latest advances and prospects. Remote Sens. 12(6):948.
  • Gindraux S, Boesch R, Farinotti D. 2017. Accuracy assessment of digital surface models from unmanned aerial vehicles’ imagery on glaciers. Remote Sensing. 9(2):186.
  • Goetz J, Brenning A. 2019. Quantifying uncertainties in snow depth mapping from structure from motion photogrammetry in an Alpine Area. Water Resour Res. 55(9):7772–7783.
  • Grünewald T, Bühler Y, Lehning M. 2014. Elevation dependency of mountain snow depth. Cryosphere. 8(6):2381–2394.
  • Gruszczyński W, Matwij W, Ćwiąkała P. 2017. Comparison of low-altitude UAV photogrammetry with terrestrial laser scanning as data-source methods for terrain covered in low vegetation. ISPRS J Photogramm Remote Sens. 126:168–179.
  • Gusain HS, Mishra VD, Arora MK, Mamgain S, Singh DK. 2016. Operational algorithm for generation of snow depth maps from discrete data in Indian Western Himalaya. Cold Reg Sci Technol. 126:22–29.
  • Harder P, Pomeroy JW, Helgason WD. 2020. Improving sub-canopy snow depth mapping with unmanned aerial vehicles: lidar versus structure-from-motion techniques. Cryosphere. 14(6):1919–1935.
  • Harder P, Schirmer M, Pomeroy J, Helgason W. 2016. Accuracy of snow depth estimation in mountain and prairie environments by an unmanned aerial vehicle. Cryosphere. 10(6):2559–2571.
  • Hohle J, Hohle M. 2009. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm Remote Sens. 64(4):398–406. doi:10.1016/j.isprsjprs.2009.02.003.
  • Hohle J, Potuckova M. 2011. Assessment of the Quality of Digital Terrain Models, EuroSDR, Official Publication No. 60. http://www.eurosdr.net/sites/default/files/uploaded_files/eurosdr_publication_ndeg_60.pdf.
  • Holmund P. 1996. Radar measurement of annual snow accumulation rates. Z Gletscherkd Glazialgeol. 32:193–196.
  • James MR, Robson S. 2012. Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J Geophys Res. 117(F3):F03017.
  • Keller F, Goyette S, Beniston M. 2005. Sensitivity analysis of snow cover to climate change scenarios and their impact on plant habitats in Alpine Terrain. Clim Change. 72(3):299–319.
  • Kelly RE, Chang AT, Tsang L, Foster JL. 2003. A prototype AMSR-E global snow area and snow depth algorithm. IEEE Trans Geosci Remote Sensing. 41(2):230–242. doi:10.1109/TGRS.2003.809118.
  • Lamsters K, Ješkins J, Sobota I, Karušs J, Džeriņš P. 2022. Surface characteristics, elevation change, and velocity of high-arctic valley glacier from repeated high-resolution UAV photogrammetry. Remote Sens. 14(4):1029. https://www.mdpi.com/2072-4292/14/4/1029.
  • Lazar B, Williams M. 2008. Climate change in western ski areas: potential changes in the timing of wet avalanches and snow quality for the Aspen ski area in the years 2030 and 2100. Cold Reg Sci Technol. 51(2-3):219–228.
  • Lee S, Park J, Choi E, Kim D. 2021. Factors influencing the accuracy of shallow snow depth measured using UAV-based photogrammetry. Remote Sens. 13(4):828.
  • Liao J, Zhou J, Yang W. 2021. Comparing LiDAR and SfM digital surface models for three land cover types. Open Geosci. 13(1):497–504.
  • Lievens H, Demuzere M, Marshall H-P, Reichle RH, Brucker L, Brangers I, de Rosnay P, Dumont M, Girotto M, Immerzeel WW, et al. 2019. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat Commun. 10(1):4629.
  • Marshall P, Koh G. 2008. FMCW radars for snow research. Cold Reg Sci Technol. 52(2):118–131.
  • Marti R, Gascoin S, Berthier E, de Pinel M, Houet T, Laffly D. 2016. Mapping snow depth in open alpine terrain from stereo satellite imagery. Cryosphere. 10(4):1361–1380. 2016.
  • McClung DM, Schaerer P. 2006. The avalanche handbook. Seattle: The Mountaineers Books.
  • McGrath D, Webb R, Shean D, Bonnell R, Marshall H, Painter TH, Molotch NP, Elder K, Hiemstra C, Brucker L, et al. 2019. Spatially extensive ground-penetrating radar snow depth observations during NASA's 2017 SnowEx campaign: comparison with in situ, airborne, and satellite observations. Water Resour Res. 55(11):10026–10036.
  • Mongus D and Zalik B. 2012. Parameter-free ground filtering of LiDAR data for automatic DTM generation.Water Resour Res. 67:1–12.
  • Nayak A, Marks D, Chandler D G and Seyfried M. 2010, Long-term snow, climate, and streamflow trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States. Water Resour Res. 46:W06519,
  • Nolan M, Larsen C, Sturm M. 2015. Mapping snow depth from manned aircraft on landscape scales at centimeter resolution using structure‐from‐motion photogrammetry. Cryosphere. 9(4):1445–1463.
  • Nolin AW. 2010. Recent advances in remote sensing of seasonal snow. J Glaciol. 56(200):1141–1150.
  • Painter TH, Berisford DF, Boardman JW, Bormann KJ, Deems JS, Gehrke F, Hedrick A, Joyce M, Laidlaw R, Marks D, et al. 2016. The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens Environ. 184:139–152. doi:10.1016/j.rse.2016.06.018.
  • Patil A, Singh G, Rüdiger C. 2020. Retrieval of snow depth and snow water equivalent using dual polarization SAR data. Remote Sens. 12(7):1183.
  • Revuelto J, Alonso-Gonzalez E, Vidaller-Gayan I, Lacroix E, Izagirre E, Rodríguez-López G, López-Moreno JI. 2021. Intercomparison of UAV platforms for mapping snow depth distribution in complex alpine terrain. Cold Reg Sci Technol. 190:103344.
  • Rolfe J. 2018. Do more GCPs equal more accurate drone maps? Pix4D Accuracy Evaluation Project. https://www.pix4d.com/blog/GCP-accuracy-drone-maps.
  • Shaw TE, Deschamps-Berger C, Gascoin S, McPhee J. 2020. Monitoring spatial and temporal differences in andean snow depth derived from satellite tri-stereo photogrammetry. Front Earth Sci. 8:579142.
  • Shaw TE, Gascoin S, Mendoza PA, Pellicciotti F, McPhee J. 2020a. Snow depth patterns in a high mountain Andean catchment from satellite optical tristereoscopic remote sensing. Water Resour Res. 56(2):e2019WR024880.
  • Shi J, Dozier J. 2000. Estimation of snow water equivalence using SIR-C/X-SAR, Part II: Inferring snow depth and particle size. IEEE Trans Geosci Remote Sens. 38(6):2475–2488.
  • Singh KK, Datt P, Sharma V, Ganju A. 2011. Snow depth and snow layer interface estimation using Ground Penetrating Radar. Curr Sci. 100(10):1532–1539.
  • Singh DK, Mishra VD, Gusain HS. 2020. Simulation and analysis of a snow avalanche accident in lower Western Himalaya, India. J Indian Soc Remote Sens. 48(11):1555–1565.
  • Singh KK, Mishra VD, Negi HS. 2007. Evaluation of snow parameters using Passive Microwave Remote Sensing. DSJ. 57(2):271–278.
  • Singh KK, Negi HS, Kumar A, Kulkarni AV, Dewali SK, Datt P, Ganju A, Kumar S. 2017. Estimation of snow accumulation on Samudra Tapu glacier, Western Himalaya using airborne ground penetrating radar. Curr Sci. 112(06):1208.
  • Snavely N, Seitz SM, Szeliski R. 2006. Photo tourism: Exploring photo collections in 3D. ACM Trans Graph. 25(3):835–846.
  • Štroner M, Urban R, Reindl T, Seidl J, Brouček J. 2020. Evaluation of the georeferencing accuracy of a photogrammetric model using a quadrocopter with onboard GNSS RTK. Sensors. 20(8):2318.
  • Thomas AF, Frazier AE, Mathews AJ, Cordova CE. 2020. Impacts of abrupt terrain changes and grass cover on vertical accuracy of UAS-SfM derived elevation models. Papers Appl Geogr. 6(4):336–351.
  • Tinkham WT, Smith AMS, Marshall H, Link TE, Falkowski MJ, Winstral AH. 2014. Quantifying spatial distribution of snow depth errors from LiDAR using Random Forest. Remote Sens Environ. 141:105–115.
  • Ullman S. 1979. The interpretation of structure from motion. Proc R Soc Lond B Biol Sci. 203(1153):405–426.
  • Vander Jagt B, Lucieer A, Wallace L, Turner D, Durand M. 2015. Snow depth retrieval with UAS using photogrammetric techniques. Geosciences. 5(3):264–285.
  • Villanueva JKS, Blanco AC. 2019. Optimization of ground control point (GCP) Configuration for unmanned aerial vehicle (UAV) survey using structure from motion (SFM). ISPRS International Archives of the Photogrammetry. Remote Sens Spatial Inf Sci XLII-4/W12:167–174.
  • Westoby MJ, Brasington J, Glasser NF, Hambrey MJ, Reynolds JM. 2012. Structure‐from‐motion’ photogrammetry: A low‐ cost, effective tool for geoscience applications. Geomorphology. 179:300–314.
  • Wipf S, Stoeckli V, Bebi P. 2009. Winter climate change in alpine tundra: Plant responses to changes in snow depth and snowmelt timing. Climatic Change 94:105–121.
  • Zekkos D, Greenwood W, Manousakis J, Athanasopoulos-Zekkos A, Clark M, Cook K L and Saroglou C. 2018. Lessons learned from the application of UAV-enabled structure-from-motion photogrammetry in geotechnical engineering. Int J Geoeng Case Hist 4(4):270.
  • Zhang K, Okazawa H, Hayashi K, Hayashi T, Fiwa L, Maskey S. 2022. Optimization of ground control point distribution for unmanned aerial vehicle photogrammetry for inaccessible fields. Sustainability. 14(15):9505. https://www.mdpi.com/2071-1050/14/15/9505.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.