324
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the scale effects of topographical variables on landslide susceptibility mapping in Sikkim Himalaya using deep learning approaches

ORCID Icon, ORCID Icon, , ORCID Icon &
Pages 17826-17852 | Received 22 Feb 2022, Accepted 11 Oct 2022, Published online: 24 Oct 2022

References

  • Abdolhosseini Moghaddam M. 2020. Application and limitation of deep learning algorithms to hydrogeology-data driven approaches to understanding effective hydraulic conductivity, flux, and monitoring network design. (Doctoral dissertation, The University of Arizona).
  • Achour Y, Pourghasemi HR. 2020. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geosci Front. 11(3):871–883.
  • Allocca V, Di Napoli M, Coda S, Carotenuto F, Calcaterra D, Di Martire D, De Vita P. 2021. A novel methodology for Groundwater Flooding Susceptibility assessment through Machine Learning techniques in a mixed-land use aquifer. Sci Total Environ. 790:148067.
  • Al-Najjar HH, Pradhan B. 2021. Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks. Geosci Front. 12(2):625–637.
  • Arabameri A, Chandra Pal S, Costache R, Saha A, Rezaie F, Seyed Danesh A, Pradhan B, Lee S, Hoang N-D. 2021a. Prediction of gully erosion susceptibility mapping using novel ensemble machine learning algorithms. Geomatics, Nat Hazards Risk. 12(1):469–498.
  • Arabameri A, Chandra Pal S, Rezaie F, Chakrabortty R, Saha A, Blaschke T, Di Napoli M, Ghorbanzadeh O, Thi Ngo PT. 2021b. Decision Tree based ensemble machine learning approaches for landslide susceptibility mapping. Geocarto Int. 37(16):4594–4627.
  • Arabameri A, Karimi-Sangchini E, Pal SC, Saha A, Chowdhuri I, Lee S, Tien Bui D. 2020. Novel credal decision tree-based ensemble approaches for predicting the landslide susceptibility. Remote Sens. 12(20):3389.
  • Arabameri A, Rezaie F, Pal SC, Cerda A, Saha A, Chakrabortty R, Lee S. 2021c. Modelling of piping collapses and gully headcut landforms: Evaluating topographic variables from different types of DEM. Geosci Front. 12(6):101230.
  • Ayinde BO, Inanc T, Zurada JM. 2019. Redundant feature pruning for accelerated inference in deep neural networks. Neural Netw. 118:148–158.
  • Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Melesse AM, Mosavi A. 2020a. Flash flood susceptibility modeling using new approaches of hybrid and ensemble tree-based machine learning algorithms. Remote Sens. 12(21):3568.
  • Band SS, Janizadeh S, Chandra Pal S, Saha A, Chakrabortty R, Shokri M, Mosavi A. 2020b. Novel ensemble approach of Deep Learning Neural Network (DLNN) model and Particle Swarm Optimization (PSO) algorithm for prediction of gully erosion susceptibility. Sensors. 20(19):5609.
  • Bera S, Upadhyay VK, Guru B, Oommen T. 2021. Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India. Nat Hazards. 108(1):1257–1289.
  • Bhandari RK. 2006. The Indian landslide scenario, strategic issues and action points, in: India Disaster Management Congress. New Delhi: Citeseer; p. 29–30.
  • Breiman L. 2001. Random forests. Machine Learning. 45(1):5–32.
  • Budimir MEA, Atkinson PM, Lewis HG. 2015. A systematic review of landslide probability mapping using logistic regression. Landslides. 12(3):419–436.
  • Bui Q-T, Nguyen Q-H, Nguyen XL, Pham VD, Nguyen HD, Pham V-M. 2020. Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping. J Hydrol. 581:124379.
  • Bui DT, Tsangaratos P, Nguyen V-T, Van Liem N, Trinh PT. 2020. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188:104426.
  • Carlini M, Chelli A, Vescovi P, Artoni A, Clemenzi L, Tellini C, Torelli L. 2016. Tectonic control on the development and distribution of large landslides in the Northern Apennines (Italy). Geomorphology. 253:425–437.
  • Chakrabortty R, Pal SC, Roy P, Saha A, Chowdhuri I. 2022. Novel ensemble approach for landslide susceptibility index assessment in a mountainous environment of India. Geocarto Int:1–26.
  • Chakraborty I, Ghosh S, Bhattacharya D, Bora A. 2011. Earthquake induced landslides in the Sikkim-Darjeeling Himalayas—An aftermath of the 18th September 2011 Sikkim earthquake. Report of Geological Survey of India, Kolkata, 8.
  • Chang K-T, Merghadi A, Yunus AP, Pham BT, Dou J. 2019. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Sci Rep. 9(1):12296.
  • Chen W, Chai H, Sun X, Wang Q, Ding X, Hong H. 2016. A GIS-based comparative study of frequency ratio, statistical index and weights-of-evidence models in landslide susceptibility mapping. Arab J Geosci. 9(3):204.
  • Chen Y, Chen W, Chandra Pal S, Saha A, Chowdhuri I, Adeli B, Janizadeh S, Dineva AA, Wang X, Mosavi A. 2022. Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto Int. 37(19):5564–5584.
  • Chen W, Pourghasemi HR, Kornejady A, Zhang N. 2017a. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma. 305:314–327.
  • Chen W, Xie X, Wang J, Pradhan B, Hong H, Bui DT, Duan Z, Ma J. 2017b. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena. 151:147–160.
  • Chen Z, Ye F, Fu W, Ke Y, Hong H. 2020. The influence of DEM spatial resolution on landslide susceptibility mapping in the Baxie River basin, NW China. Nat Hazards. 101(3):853–877.
  • Chowdhuri I, Pal S, Arabameri A, Ngo P, Chakrabortty R, Malik S, Das B, Roy P. 2020a. Ensemble approach to develop landslide susceptibility map in landslide dominated Sikkim Himalayan region, India. Environ Earth Sci. 79(20):1–28.
  • Chowdhuri I, Pal SC, Arabameri A, Saha A, Chakrabortty R, Blaschke T, Pradhan B, Band SS. 2020b. Implementation of artificial intelligence based ensemble models for gully erosion susceptibility assessment. Remote Sens. 12(21):3620.
  • Chowdhuri I, Pal SC, Chakrabortty R, Malik S, Das B, Roy P. 2021. Torrential rainfall-induced landslide susceptibility assessment using machine learning and statistical methods of eastern Himalaya. Nat Hazards. 107(1):697–722.
  • Chowdhuri I, Pal SC, Janizadeh S, Saha A, Ahmadi K, Chakrabortty R, Islam A, Roy P, Shit M. 2022a. Application of novel deep boosting framework-based earthquake induced landslide hazards prediction approach in Sikkim Himalaya. Geocarto Int:1–27.
  • Chowdhuri I, Pal SC, Saha A, Chakrabortty R, Roy P. 2022b. Mapping of earthquake hotspot and coldspot zones for identifying potential landslide hotspot areas in the Himalayan region. Bull Eng Geol Environ. 81(7):1–23.
  • Claessens L, Heuvelink GBM, Schoorl JM, Veldkamp A. 2005. DEM resolution effects on shallow landslide hazard and soil redistribution modelling. Earth Surf Process Landforms. 30(4):461–477.
  • Coelho IM, Coelho VN, Luz EdS, Ochi LS, Guimarães FG, Rios E. 2017. A GPU deep learning metaheuristic based model for time series forecasting. Appl Energy. 201:412–418.
  • Costache R, Ngo PTT, Bui DT. 2020. Novel ensembles of deep learning neural network and statistical learning for flash-flood susceptibility mapping. Water. 12(6):1549.
  • DeLong ER, DeLong DM, Clarke-Pearson DL. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44(3):837–845.
  • Dou J, Yunus AP, Merghadi A, Shirzadi A, Nguyen H, Hussain Y, Avtar R, Chen Y, Pham BT, Yamagishi H. 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci Total Environ. 720:137320.
  • Fang Z, Wang Y, Peng L, Hong H. 2021. A comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping. Int J Geograph Information Sc. 35(2):321–347.
  • Froude MJ, Petley DN. 2018. Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci. 18(8):2161–2181.
  • Gaidzik K, Ramírez-Herrera MT. 2021. The importance of input data on landslide susceptibility mapping. Sci Rep. 11(1):1–14.
  • Garosi Y, Sheklabadi M, Pourghasemi HR, Besalatpour AA, Conoscenti C, Van Oost K. 2018. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping. Geoderma. 330:65–78.
  • Ghorbanzadeh O, Blaschke T, Gholamnia K, Meena SR, Tiede D, Aryal J. 2019. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens. 11(2):196.
  • Gokceoglu C. 2012. Discussion on “combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using aster images and gis” by choi et al.(2012), engineering geology, 124, 12–23. Eng Geol. 129–130:104–105.
  • Graves A, Mohamed A, Hinton G. 2013. Speech recognition with deep recurrent neural networks. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE. p. 6645–6649.
  • Guan Z, Wang J, Wang X, Xin W, Cui J, Jing X. 2021. A comparative study of RNN-based methods for web malicious code detection. 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS). IEEE. p. 769–773.
  • Han H, Guo X, Yu H. 2016. Variable selection using mean decrease accuracy and mean decrease gini based on random forest. 2016 7th Ieee International Conference on Software Engineering and Service Science (Icsess). IEEE. p. 219–224.
  • Harilal GT, Madhu D, Ramesh MV, Pullarkatt D. 2019. Towards establishing rainfall thresholds for a real-time landslide early warning system in Sikkim, India. Landslides. 16(12):2395–2408.
  • He Q, Xu Z, Li S, Li R, Zhang S, Wang N, Pham BT, Chen W. 2019. Novel entropy and rotation forest-based credal decision tree classifier for landslide susceptibility modeling. Entropy. 21(2):106.
  • Hengl T. 2006. Finding the right pixel size. Comput Geosci. 32(9):1283–1298.
  • Hong H, Pradhan B, Sameen MI, Kalantar B, Zhu A, Chen W. 2018. Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach. Landslides. 15(4):753–772.
  • Hosseini H, Xiao B, Jaiswal M, Poovendran R. 2017. On the limitation of convolutional neural networks in recognizing negative images. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). IEEE, p. 352–358.
  • Huang R, Fan X. 2013. The landslide story. Nature Geosci. 6(5):325–326.
  • Hungr O, Leroueil S, Picarelli L. 2014. The Varnes classification of landslide types, an update. Landslides. 11(2):167–194.
  • Islam A, Saha A, Ghose B, Pal SC, Chowdhuri I, Mallick J. 2021. Landslide susceptibility modeling in a complex mountainous region of Sikkim Himalaya using new hybrid data mining approach. Geocarto Int:1–26.
  • Janizadeh S, Pal SC, Saha A, Chowdhuri I, Ahmadi K, Mirzaei S, Mosavi AH, Tiefenbacher JP. 2021. Mapping the spatial and temporal variability of flood hazard affected by climate and land-use changes in the future. J Environ Manage. 298:113551.
  • Jena R, Pradhan B, Alamri AM. 2020. Susceptibility to seismic amplification and earthquake probability estimation using recurrent Neural Network (RNN) model in Odisha, India. Appl Sci. 10(15):5355.
  • Kamiński M. 2020. The impact of quality of digital elevation models on the result of landslide susceptibility modeling using the method of weights of evidence. Geosciences. 10(12):488.
  • Kamran KV, Feizizadeh B, Khorrami B, Ebadi Y. 2021. A comparative approach of support vector machine kernel functions for GIS-based landslide susceptibility mapping. Appl Geomat. 13(4):837–851.
  • Kumar A, Bhambri R, Tiwari SK, Verma A, Gupta AK, Kawishwar P. 2019. Evolution of debris flow and moraine failure in the Gangotri Glacier region, Garhwal Himalaya: Hydro-geomorphological aspects. Geomorphology. 333:152–166.
  • Lanaras C, Bioucas-Dias J, Galliani S, Baltsavias E, Schindler K. 2018. Super-resolution of Sentinel-2 images: Learning a globally applicable deep neural network. ISPRS J Photogr Remote Sens. 146:305–319.
  • Lechner AM, Stein A, Jones SD, Ferwerda JG. 2009. Remote sensing of small and linear features: Quantifying the effects of patch size and length, grid position and detectability on land cover mapping. Remote Sens Environ. 113(10):2194–2204.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444.
  • Li Y, Zhang Y, Huang X, Yuille AL. 2018. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images. ISPRS J Photogrammetr Remote Sens. 146:182–196.
  • Lucchese LV, de Oliveira GG, Pedrollo OC. 2021. Mamdani fuzzy inference systems and artificial neural networks for landslide susceptibility mapping. Nat Hazards. 106(3):2381–2405.
  • Mahalingam R, Olsen MJ, O'Banion MS. 2016. Evaluation of landslide susceptibility mapping techniques using lidar-derived conditioning factors (Oregon case study). Geomatics, Nat Hazards and Risk. 7(6):1884–1907.,
  • Mehrabi M, Moayedi H. 2021. Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms. Environ Earth Sci. 80(24):1–20.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance. Earth-Sci Rev. 207:103225.
  • Nakileza BR, Nedala S. 2020. Topographic influence on landslides characteristics and implication for risk management in upper Manafwa catchment, Mt Elgon Uganda. Geoenviron Disasters. 7(1):27.
  • Ngo PTT, Panahi M, Khosravi K, Ghorbanzadeh O, Kariminejad N, Cerda A, Lee S. 2021. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front. 12(2):505–519.
  • Nugraha H, Wacano D, Dipayana GA, Cahyadi A, Mutaqin BW, Larasati A. 2015. Geomorphometric characteristics of landslides in the Tinalah watershed, Menoreh Mountains, Yogyakarta, Indonesia. Proc Environ Sci. 28:578–586.
  • Pal SC, Arabameri A, Blaschke T, Chowdhuri I, Saha A, Chakrabortty R, Lee S, Band SS. 2020. Ensemble of machine-learning methods for predicting gully erosion susceptibility. Remote Sens. 12(22):3675.
  • Pal SC, Chakrabortty R, Saha A, Bozchaloei SK, Pham QB, Linh NTT, Anh DT, Janizadeh S, Ahmadi K. 2022. Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian-and tree-based models. Bull Eng Geol Environ. 81(1):25.
  • Pal S, Chowdhuri I. 2019. GIS-based spatial prediction of landslide susceptibility using frequency ratio model of Lachung River basin, North Sikkim, India. SN Appl Sci. 1(5):416.
  • Park S, Kim J. 2019. Landslide susceptibility mapping based on random forest and boosted regression tree models, and a comparison of their performance. Appl Sci. 9(5):942.
  • Pham BT, Luu C, Van Dao D, Van Phong T, Nguyen HD, Van Le H, von Meding J, Prakash I. 2021a. Flood risk assessment using deep learning integrated with multi-criteria decision analysis. Knowledge-Based Syst. 219:106899.
  • Pham BT, Prakash I, Dou J, Singh SK, Trinh PT, Tran HT, Le TM, Phong TV, Khoi DK, Shirzadi A, et al. 2020. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto Int. 35(12):1267–1292.
  • Pham BT, Van Dao D, Acharya TD, Van Phong T, Costache R, Van Le H, Nguyen HBT, Prakash I. 2021b. Performance assessment of artificial neural network using chi-square and backward elimination feature selection methods for landslide susceptibility analysis. Environ Earth Sci. 80(20):1–13.
  • Pourghasemi HR, Kerle N. 2016. Random forests and evidential belief function-based landslide susceptibility assessment in Western Mazandaran Province, Iran. Environ Earth Sci. 75(3):185.
  • Pradhan B, Sameen MI. 2017. Effects of the spatial resolution of digital elevation models and their products on landslide susceptibility mapping. In: Laser scanning applications in landslide assessment. Berlin: Springer, Verlag; p. 133–150.
  • Prasad P, Loveson VJ, Das B, Kotha M. 2022. Novel ensemble machine learning models in flood susceptibility mapping. Geocarto Int. 37(16):4571–4593.
  • Razavi-Termeh SV, Shirani K, Pasandi M. 2021. Mapping of landslide susceptibility using the combination of neuro-fuzzy inference system (ANFIS), ant colony (ANFIS-ACOR), and differential evolution (ANFIS-DE) models. Bull Eng Geol Environ. 80(3):2045–2067.
  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F. 2018. A review of statistically-based landslide susceptibility models. Earth-Sci Rev. 180:60–91.
  • Saha A, Pal SC, Arabameri A, Chowdhuri I, Rezaie F, Chakrabortty R, Roy P, Shit M. 2021a. Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements. J Environ Manage. 287:112284.
  • Saha A, Pal SC, Santosh M, Janizadeh S, Chowdhuri I, Norouzi A, Roy P, Chakrabortty R. 2021b. Modelling multi-hazard threats to cultural heritage sites and environmental sustainability: The present and future scenarios. J Cleaner Produc. 320:128713.
  • Sarkar S, Roy AK, Martha TR. 2013. Landslide susceptibility assessment using information value method in parts of the Darjeeling Himalayas. J Geol Soc India. 82(4):351–362.
  • Sati VP. 2007. Environmental impacts of debris flows-A case study of the two debris-flow zones in the Garhwal Himalaya. Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Chen & Major, eds. p. 715–723.
  • Sbroglia RM, Reginatto GMP, Higashi RAR, Guimarães RF. 2018. Mapping susceptible landslide areas using geotechnical homogeneous zones with different DEM resolutions in Ribeirão Baú basin, Ilhota/SC/Brazil. Landslides. 15(10):2093–2106.
  • Schlögel R, Marchesini I, Alvioli M, Reichenbach P, Rossi M, Malet J-P. 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology. 301:10–20.
  • Schmidhuber J. 2015. Deep learning in neural networks: An overview. Neural Netw. 61:85–117.
  • Sengupta A, Gupta S, Anbarasu K. 2010. Rainfall thresholds for the initiation of landslide at Lanta Khola in north Sikkim, India. Nat Hazards. 52(1):31–42.
  • SERIES-E. 2011. Geoseismological report on Sikkim earthquake.
  • Sharma A, Prakash C, Manivasagam VS. 2021. Entropy-based hybrid integration of random forest and support vector machine for landslide susceptibility analysis. Geomatics. 1(4):399–416.
  • Sun D, Xu J, Wen H, Wang D. 2021. Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: A comparison between logistic regression and random forest. Engin Geol. 281:105972.
  • Svalova VB, Zaalishvili VB, Ganapathy GP, Nikolaev AV, Melkov DA. 2019. Landslide risk in mountain areas. Geol South of Russia. 2.
  • Taalab K, Cheng T, Zhang Y. 2018. Mapping landslide susceptibility and types using random forest. Big Earth Data. 2(2):159–178.
  • Tanyu BF, Abbaspour A, Alimohammadlou Y, Tecuci G. 2021. Landslide susceptibility analyses using Random Forest, C4. 5, and C5. 0 with balanced and unbalanced datasets. Catena. 203:105355.
  • Tien Bui D, Hoang N-D, Martínez-Álvarez F, Ngo P-TT, Hoa PV, Pham TD, Samui P, Costache R. 2020. A novel deep learning neural network approach for predicting flash flood susceptibility: A case study at a high frequency tropical storm area. Sci Total Environ. 701:134413.
  • Van Dao D, Jaafari A, Bayat M, Mafi-Gholami D, Qi C, Moayedi H, Phong TV, Ly H-B, Le T-T, Trinh PT, et al. 2020. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. Catena. 188:104451.
  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L. 2010. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J Machine Learn Res. 11.
  • Wang Y, Fang Z, Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ. 666:975–993.
  • Wang Y, Fang Z, Wang M, Peng L, Hong H. 2020. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput Geosci. 138:104445.
  • Wang G, Lei X, Chen W, Shahabi H, Shirzadi A. 2020. Hybrid computational intelligence methods for landslide susceptibility mapping. Symmetry. 12(3):325.
  • Wechsler SP. 2007. Uncertainties associated with digital elevation models for hydrologic applications: a review. Hydrol Earth Syst Sci. 11(4):1481–1500.
  • Xu S, Niu R. 2018. Displacement prediction of Baijiabao landslide based on empirical mode decomposition and long short-term memory neural network in Three Gorges area, China. Comput Geosci. 111:87–96.
  • Yordanov V, Brovelli MA. 2020. Comparing model performance metrics for landslide susceptibility mapping. In: 2020 24th ISPRS Congress-Technical Commission III. International Society for Photogrammetry and Remote Sensing, p. 1277–1284.
  • Yousefi S, Sadhasivam N, Pourghasemi HR, Ghaffari Nazarlou H, Golkar F, Tavangar S, Santosh M. 2020. Groundwater spring potential assessment using new ensemble data mining techniques. Measurement. 157:107652.
  • Zhang JX, Chang K-T, Wu JQ. 2008. Effects of DEM resolution and source on soil erosion modelling: a case study using the WEPP model. Int J Geograph Inform Sci. 22(8):925–942.
  • Zhang T, Han L, Han J, Li X, Zhang H, Wang H. 2019. Assessment of landslide susceptibility using integrated ensemble fractal dimension with Kernel logistic regression model. Entropy. 21(2):218.
  • Zhang R, Isola P, Efros AA. 2017. Split-brain autoencoders: Unsupervised learning by cross-channel prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. p. 1058–1067.
  • Zhang C, Sargent I, Pan X, Li H, Gardiner A, Hare J, Atkinson PM. 2018. An object-based convolutional neural network (OCNN) for urban land use classification. Remote Sens Environ. 216:57–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.