961
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Assessment of interferometric coherence contribution to corn and soybean mapping with Sentinel-1 data time series

, , , &
Pages 1-22 | Received 17 Mar 2022, Accepted 01 Nov 2022, Published online: 20 Nov 2022

References

  • Ahmed R, Siqueira P, Hensley S, Chapman B, Bergen K. 2011. A survey of temporal decorrelation from spaceborne L-Band Repeat-Pass InSAR. Remote Sen Envi. 115(11):2887–2896. doi:10.1016/j.rse.2010.03.017.
  • Amherdt S, Di Leo NC, Balbarani S, Pereira A, Cornero C, Pacino MC. 2021. Exploiting Sentinel-1 data time-series for crop classification and harvest date detection. Int J Remote Sens. 42(19):7313–7331.
  • Aoki AM, Robledo JI, Izaurralde RC, Balzarini MG. 2021. Temporal integration of remote‐sensing land cover maps to identify crop rotation patterns in a semiarid region of Argentina. Agron J. 113(4):3232–3243.
  • Attema E, Cafforio C, Gottwald M, Guccione P, Monti Guarnieri A, Rocca F, Snoeij P. 2010. Flexible dynamic block adaptive quantization for Sentinel-1 SAR missions. IEEE Geosci Remote Sens Lett. 7(4):766–770.
  • Bitar MV, Cabrini SM, Orlando L, Lingua M, Paolilli C, Fillat F, Elustondo L, Bevaqua F, Senigagliesi C. 2020. Los sistemas productivos del partido de Pergamino: resultados de una encuesta a productores. Indicadores económicos e informes técnicos INTA EEA Pergamino, N° 2, enero 2020. https://inta.gob.ar/sites/default/files/inta_pergamino_los_sistemas_productivos_del_partido_de_pergamino_resultados_de_una_encuesta_a_productores_2.pdf.
  • Blaes X, Vanhalle L, Defourny P. 2005. Efficiency of crop identification based on optical and SAR image time series. Remote Sens Environ. 96(3-4):352–365.
  • Borrás L, Maddonni GA, Otegui ME. 2003. Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res. 82(1):13–26.
  • Bowles TM, Mooshammer M, Socolar Y, Calderón F, Cavigelli MA, Culman SW, Deen W, Drury CF, Garcia AG, Gaudin AC, et al. 2020. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth. 2(3):284–293.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32.
  • Brown de Colstoun EC, Huang C, Wang P, Tilton JC, Tan B, Phillips J, Niemczura S, Ling P-Y, Wolfe RE. 2017. Global man-made impervious surface (GMIS) dataset from Landsat. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC); [accessed 2021 Oct 19].
  • Busquier M, Lopez-Sanchez JM, Mestre-Quereda A, Navarro E, González-Dugo MP, Mateos L. 2020. Exploring TanDEM-X interferometric products for crop-type mapping. Remote Sens. 12(11):1774.
  • Cai Y, Guan K, Peng J, Wang S, Seifert C, Wardlow B, Li Z. 2018. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens Environ. 210:35–47.
  • Chang J, Hansen MC, Pittman K, Carroll M, DiMiceli C. 2007. Corn and soybean mapping in the United States using MODIS time‐series data sets. Agron J. 99(6):1654–1664.
  • Congalton RG, Green K. 2020. Assessing the accuracy of remotely sensed data: principles and practices. 3rd ed. London, UK: CRC Press.
  • de Abelleyra D, Veron S, Banchero S, Mosciaro MJ, Propato T, Ferraina A, Taffarel MCG, Dacunto L, Franzoni A, Volante J. 2020. First large extent and high resolution cropland and crop type map of Argentina. 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS). 22–26 March 2020, Santiago, Chile: IEEE.
  • Di Yenno F, Terré E. 2021. Argentina se encamina a un récord de siembras en la 2021/22. Informativo semanal: Mercados; [accessed 2021 July 23]. https://www.bcr.com.ar/es/print/pdf/node/87073.
  • Dingle Robertson L, M. Davidson A, McNairn H, Hosseini M, Mitchell S, de Abelleyra D, Verón S, Le Maire G, Plannells M, Valero S, et al. 2020. C-band synthetic aperture radar (SAR) imagery for the classification of diverse cropping systems. Int J Remote Sens. 41(24):9628–9649.
  • Engdahl M. 2013. Multitemporal InSAR in land-cover and vegetation mapping [Ph.D. thesis]. Espoo, Finland: Aalto University.
  • FAO. 2022. Crops and livestock products; [accessed 2022 May 10]. https://www.fao.org/faostat/en/#data/QCL.
  • Frison P-L, Fruneau B, Kmiha S, Soudani K, Dufrêne E, Le Toan T, Koleck T, Villard L, Mougin E, Rudant J-P. 2018. Potential of Sentinel-1 data for monitoring temperate mixed forest phenology. Remote Sens. 10(12):2049.
  • Gayo S, López M. 2018. Dinámica de los planteos de maíz en la Argentina: de dónde venimos y hacia dónde vamos. Congreso Maizar 2018; May 22; Buenos Aires, Argentina, http://agrolinux3.agrositio.com/maizar/congresomaizar/2018/presentaciones/competitividad/gayo_lopez.pdf.
  • Geudtner D, Torres R. 2012. Sentinel-1 system overview and performance. 2012 IEEE International Geoscience and Remote Sensing Symposium. 22-27 July 2012, Munich, Germany: IEEE.
  • Hanssen RF. 2001. Radar interferometry. Data Interpretation and Error Analysis. Remote Sensing Digital Image Processing. Dordrecht, Boston: Springer. doi:10.1007/0-306-47633-9
  • Jacob AW, Vicente-Guijalba F, Lopez-Martinez C, Lopez-Sanchez JM, Litzinger M, Kristen H, Mestre-Quereda A, Ziolkowski D, Lavalle M, Notarnicola C, et al. 2020. Sentinel-1 InSAR coherence for land cover mapping: a comparison of multiple feature-based classifiers. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:535–552.
  • Jiao X, McNairn H, Shang J, Pattey E, Liu J, Champagne C. 2011. The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index. Can J Remote Sens. 37(1):69–81.
  • Kavats O, Khramov D, Sergieieva K, Vasyliev V. 2019. Monitoring harvesting by time series of Sentinel-1 SAR data. Remote Sens. 11(21):2496.
  • Khabbazan S, Vermunt P, Steele-Dunne S, Ratering Arntz L, Marinetti C, van der Valk D, Iannini L, Molijn R, Westerdijk K, van der Sande C. 2019. Crop monitoring using Sentinel-1 data: a case study from The Netherlands. Remote Sens. 11(16):1887.
  • Kumari M, Murthy CS, Pandey V, Bairagi GD. 2019. Soybean cropland mapping using multi-temporal Sentinel-1 data. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-3/W6:109–114.
  • Li J, Huang L, Zhang J, Coulter JA, Li L, Gan Y. 2019. Diversifying crop rotation improves system robustness. Agron Sustain Dev. 39(4). doi:10.1007/s13593-019-0584-0
  • Li L, Kong Q, Wang P, Xun L, Wang L, Xu L, Zhao Z. 2019. Precise identification of maize in the North China Plain based on Sentinel-1A SAR time series data. Int J Remote Sens. 40(5-6):1996–2013.
  • McNairn H, Champagne C, Shang J, Holmstrom D, Reichert G. 2009. Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J Photogramm Remote Sens. 64(5):434–449.
  • McNairn H, Duguay C, Boisvert J, Huffman E, Brisco B. 2001. Defining the sensitivity of multi-frequency and multi-polarized radar backscatter to post-harvest crop residue. Can J Remote Sens. 27(3):247–263.
  • McNairn H, Duguay C, Brisco B, Pultz TJ. 2002. The effect of soil and crop residue characteristics on polarimetric radar response. Remote Sens Environ. 80(2):308–320.
  • McNairn H, Kross A, Lapen D, Caves R, Shang J. 2014. Early season monitoring of corn and soybeans with TerraSAR-X and RADARSAT-2. Int J Appl Earth Obs Geoinf. 28:252–259.
  • McNairn H, Shang J. 2016. A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. In Multitemporal remote sensing. Remote Sensing and Digital Image Processing, vol 20. Springer, Cham. p. 317–340. doi: 10.1007/978-3-319-47037-5_15
  • Mestre-Quereda A, Lopez-Sanchez JM, Vicente-Guijalba F, Jacob AW, Engdahl ME. 2020. Time-series of sentinel-1 interferometric coherence and backscatter for crop-type mapping. IEEE J Sel Top Appl Earth Observ Remote Sens. 13:4070–4084.
  • Morishita Y, Hanssen RF. 2015. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils. IEEE Trans Geosci Remote Sens. 53(2):1096–1104.
  • Nasirzadehdizaji R, Cakir Z, Balik Sanli F, Abdikan S, Pepe A, Calò F. 2021. Sentinel-1 interferometric coherence and backscattering analysis for crop monitoring. Comput Electron Agric. 185:106118.
  • Ok AO, Akar O, Gungor O. 2012. Evaluation of random forest method for agricultural crop classification. Eur J Remote Sens. 45(1):421–432.
  • Otegui ME, Riglos M, Mercau JL. 2021. Genetically modified maize hybrids and delayed sowing reduced drought effects across a rainfall gradient in temperate Argentina. J Exp Bot. 72(14):5180–5188.
  • Ouaadi N, Jarlan L, Ezzahar J, Zribi M, Khabba S, Bouras E, Bousbih S, Frison P-L. 2020. Monitoring of wheat crops using the backscattering coefficient and the interferometric coherence derived from Sentinel-1 in semi-arid areas. Remote Sens Environ. 251:112050.
  • Pott LP, Amado TJC, Schwalbert RA, Corassa GM, Ciampitti IA. 2021. Satellite-based data fusion crop type classification and mapping in Rio Grande do Sul, Brazil. ISPRS J Photogramm Remote Sens. 176:196–210.
  • Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodriguez E, Goldstein RM. 2000. Synthetic aperture radar interferometry. Proc IEEE. 88(3):333–382.
  • Seymour MS, Cumming IG. 2002. Maximum likelihood estimation for SAR interferometry. Proceedings of IGARSS ’94 - 1994 IEEE International Geoscience and Remote Sensing Symposium. 08-12 August 1994, Pasadena, CA, USA: IEEE.
  • Shang J, Liu J, Poncos V, Geng X, Qian B, Chen Q, Dong T, Macdonald D, Martin T, Kovacs J, et al. 2020. Detection of crop seeding and harvest through analysis of time-series Sentinel-1 interferometric SAR data. Remote Sens. 12(10):1551.
  • She B, Anhui C, Yang Y, Zhao Z, Huang L, Liang D, Zhang D. 2020. Identification and mapping of soybean and maize crops based on Sentinel-2 data. Int J Agric Biol Eng. 13(6):171–182.
  • Simard M, Hensley S, Lavalle M, Dubayah R, Pinto N, Hofton M. 2012. An empirical assessment of temporal decorrelation using the uninhabited aerial vehicle synthetic aperture radar over forested landscapes. Remote Sens. 4(4):975–986. doi:10.3390/rs4040975.
  • Ulaby FT, Allen CT, Eger G, III, Kanemasu E. 1984. Relating the microwave backscattering coefficient to leaf area index. Remote Sens Environ. 14(1-3):113–133.
  • Veloso A, Mermoz S, Bouvet A, Le Toan T, Planells M, Dejoux J, Ceschia E. 2017. Understanding the temporal behaviour of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens Environ. 199:415–426.
  • Villarroya-Carpio A, Lopez-Sanchez JM, Engdahl ME. 2022. Sentinel-1 interferometric coherence as a vegetation index for agriculture. Remote Sens Environ. 280:113208.
  • Vreugdenhil M, Wagner W, Bauer-Marschallinger B, Pfeil I, Teubner I, Rüdiger C, Strauss P. 2018. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: an Austrian case study. Remote Sens. 10(9):1396.
  • Wang S, Azzari G, Lobell DB. 2019. Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques. Remote Sens Environ. 222:303–317.
  • Wang S, Di Tommaso S, Deines JM, Lobell DB. 2020. Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive. Sci Data. 7(1):307.
  • Weiss M, Jacob F, Duveiller G. 2020. Remote sensing for agricultural applications: a meta-review. Remote Sens Environ. 236:111402.
  • Whelen T, Siqueira P. 2018. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens Lett. 9(5):411–420.
  • Xie Q, Lai K, Wang J, Lopez-Sanchez JM, Shang J, Liao C, Zhu J, Fu H, Peng X. 2021. Crop monitoring and classification using polarimetric RADARSAT-2 time-series data across growing season: a case study in Southwestern Ontario, Canada. Remote Sens. 13(7):1394.
  • Zebker HA, Villasenor J. 1992. Decorrelation in interferometric radar echoes. IEEE Trans Geosci Remote Sens. 30(5):950–959.
  • Zhong L, Hu L, Yu L, Gong P, Biging GS. 2016. Automated mapping of soybean and corn using phenology. ISPRS J Photogramm Remote Sens. 119:151–164.