2,391
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Challenges for chlorophyll-a remote sensing in a highly variable turbidity estuary, an implementation with sentinel-2

ORCID Icon, , , ORCID Icon &
Article: 2160017 | Received 03 May 2022, Accepted 09 Dec 2022, Published online: 14 Feb 2023

References

  • Armstrong RA, Gilbes F, Guerrero R, Lasta C, Benavidez H, Mianzan H. 2004. Validation of SeaWiFS-derived chlorophyll for the Rio de la Plata Estuary and adjacent waters. Int J Remote Sensing. 25(7–8):1501–1505.
  • Aubriot L, Zabaleta B, Bordet F, Sienra D, Risso J, Achkar M, Somma A. 2020. Assessing the origin of a massive cyanobacterial bloom in the Río de la Plata (2019): towards an early warning system. Water Res. 181:115944.
  • Borfecchia F, Micheli C, Cibic T, Pignatelli V, De Cecco L, Consalvi N, Caroppo C, Rubino F, Di Poi E, Kralj M, et al. 2019. Multispectral data by the new generation of high-resolution satellite sensors for mapping phytoplankton blooms in the Mar Piccolo of Taranto (Ionian Sea, southern Italy). European J Remote Sens. 52(1):400–418.
  • Bramich J, Bolch CJS, Fischer A. 2021. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol Indic. 120:106876.
  • Cannizzaro JP, Barnes BB, Hu C, Corcoran AA, Hubbard KA, Muhlbach E, Sharp WC, Brand LE, Kelble CR. 2019. Remote detection of cyanobacteria blooms in an optically shallow subtropical lagoonal estuary using MODIS data. Remote Sens Environ. 231:111227.
  • Carreto JI, Montoya N, Akselman R, Carignan MO, Silva RI, Cucchi Colleoni D. A. 2008. Algal pigment patterns and phytoplankton assemblages in different water masses of the Río de la Plata maritime front. Contin Shelf Resear. 28(13):1589–1606.
  • Chorus I, Welker M. 2021. Exposure to cyanotoxins: understanding it and short-term interventions to prevent it. In: I. Chorus and M. Welker, editors. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. 2nd ed., Chap. 5. CRC Press, Boca Raton (FL), on behalf of the World Health Organization, Geneva; p. 295–400.
  • Coronado-Franco KV, Selvaraj JJ, Mancera Pineda JE. 2018. Algal blooms detection in Colombian Caribbean Sea using MODIS imagery. Mar Pollut Bull. 133:791–798.
  • Dall’Olmo G, Gitelson AA, Rundquist DC. 2003. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters. Geophys Res Lett. 30(18):1938.
  • Dall’Olmo G, Gitelson AA, Rundquist DC, Leavitt B, Barrow T, Holz JC. 2005. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands. Remote Sens Environ. 96(2):176–187.
  • Dogliotti AI, Gossn JI, Gonzalez C, Yema L, Sanchez ML, O’Farrell I. 2021. Evaluation of multi- and hyper- spectral chl-a algorithms in the Río de la Plata turbid waters during a cyanobacteria bloom. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium; p. 7442–7445. IEEE.
  • Dogliotti AI, Ruddick K, Guerrero R. 2016. Seasonal and inter-annual turbidity variability in the Río de la Plata from 15 years of MODIS: el Niño dilution effect. Estuarine, Coastal and Shelf Science. 182:27–39.
  • Drozd A, de Tezanos Pinto P, Fernández V, Bazzalo M, Bordet F, Ibañez G. 2020. Hyperspectral remote sensing monitoring of cyanobacteria blooms in a large South American reservoir: high- and medium-spatial resolution satellite algorithm simulation. Mar Freshwater Res. 71(5):593–605.
  • Fossati M, Cayocca F, Piedra-Cueva I. 2014. Fine sediment dynamics in the Río de la Plata. Adv Geosci. 39:75–80.
  • Framiñan MB, Brown OB. 1996. Study of the Rio de la Plata turbidity front, Part I: spatial and temporal distribution. Continen Shelf Resear. 16(10):1259–1282.
  • García-Alonso J, Lercari D, Defeo O. 2019. Río de la Plata: a neotropical Estuarine system. In: E. Wolanski, J. W. Day, M. Elliott, and R. Ramachandran, editors. Coasts and Estuaries. Chap. 3. Amsterdam: Elsevier; p. 45–56.
  • Garcia CAE, Garcia VMT. 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region. Continen Shelf Resear. 28(13):1568–1578.
  • Garcia VMT, Signorini S, Garcia CAE, McClain CR. 2006. Empirical and semi-analytical chlorophyll algorithms in the southwestern Atlantic coastal region (25–40 S and 60–45 W). Int J Remote Sens. 27(8):1539–1562.
  • Gernez P, Doxaran D, Barille L. 2017. Shellfish aquaculture from space: potential of Sentinel 2 to monitor tide-driven changes in Turbidity, chlorophyll concentration and oyster physiological response at the scale of an Oyster Farm. Front Mar Sci. 4: 137
  • Gholizadeh MH, Melesse AM, Reddi L. 2016. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors. 16(8):1298.
  • Giannini MFC, Garcia CAE, Tavano VM, Ciotti AM. 2013. Effects of low-salinity and high-turbidity waters on empirical ocean colour algorithms: an example for Southwestern Atlantic waters. Continen Shelf Resear. 59:84–96.
  • Giannuzzi L, Carvajal G, Corradini MG, Araujo-Andrade C, Echenique R, Andrinolo D. 2012. Occurrence of toxic cyanobacterial blooms in Río de la Plata Estuary, Argentina: field study and data analysis. J Toxicol. 2012:1–15.
  • Gitelson AA. 1992. The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Inter J Remote Sens. 13(17):3367–3373.
  • Gitelson AA, Schalles JF, Hladik CM. 2007. Remote chlorophyll-a retrieval in turbid, productive estuaries: chesapeake Bay case study. Remote Sens Environ. 109(4):464–472.
  • Gitelson AA, Schalles JF, Rundquist D. C, Schiebe YZ, Yacobi FR. 1999. Comparative reflectance properties of algal cultures with manipulated densities. J Appl Phycol. 11(4):345–354.
  • Gohin F, Lampert L, Guillaud JF, Herbland A, Nézan E. 2003. Satellite and in situ observations of a late winter phytoplankton bloom, in the northern Bay of Biscay. Continen Shelf Resear. 23(11–13):1117–1141.
  • Gons HJ, Rijkeboer M, Ruddick KG. 2002. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. J Plankton Research. 24(9):947–951.
  • Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS, Clark D. K. 1988. A semianalytic radiance model of Ocean Color. J Geophys Res. 93(D9):10909–10924.
  • Gower J, King S, Borstad G, Brown L. 2005. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. Inter J Remote Sens. 26(9):2005–2012.
  • Gower J, King S, Borstad G, Brown L. 2008. The importance of a band at 709 nm for interpreting water-leaving spectral radiance. Can. J. Remote Sens. 34(3):287–295.
  • Gower JFR. 1980. Observations of in situ fluorescence of chlorophyll-a in Saanich Inlet. Boundary-Layer Meteorol. 18(3):235–245.
  • Gower JFR, R, Doerffer, GA, Borstad. 1999. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Inter J Remote Sens. 20(9):1771–1786.
  • Hillebrand H, Durselen C, Kirschtel D, Pollingher U, Zohary T. 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35(2):403–424.
  • Hu C. 2009. A novel ocean color index to detect floating algae in the global oceans. Remote Sens Environ. 113(10):2118–2129.
  • Hu C, Lee Z, Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J Geophys Resear. 117: c1011.
  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. 2018. Cyanobacterial blooms. Nat Rev Microbiol. 16(8):471–483.
  • Huret M, Dadou I, Dumas F, Lazure P, Garcon V. 2005. Coupling physical and biogeochemical processes in the Río de la Plata plume. Continental Shelf Research. 25(5–6):629–653.
  • ISO-10260. 1992. Water quality measurement of biochemical parameters: spectrophotometric determination of chlorophyll-a concentration. Standard 10260. Geneva, Switzerland: international Organization for Standardization.
  • Jaureguizar AJ, Solari A, Cortés F, Milessi AC, Militelli MI, Camiolo MD, Clara ML, García M. 2016. Fish diversity in the Río de la Plata and adjacent waters: an overview of environmental influences on its spatial and temporal structure. J Fish Biol. 89(1):569–600.
  • Kahru M, Elmgren R. 2014. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences. 11(13):3619–3633.
  • Khan RM, Salehi B, Mahdianpari M, Mohammadimanesh F, Mountrakis G, Quackenbush LJ. 2021. A meta-analysis on Harmful Algal Bloom (HAB) detection and monitoring: a remote sensing perspective. Remote Sens. 13(21):4347.
  • Kruk C, Martínez A, Martínez de la Escalera G, Trinchin R, Manta G, Segura AM, Piccini C, Brena B, Yannicelli B, Fabiano G, et al. 2021. Rapid freshwater discharge on the coastal ocean as a mean of long distance spreading of an unprecedented toxic cyanobacteria bloom. Sci Total Environ. 754:142362.
  • Le C, Li Y, Zha Y, Sun D, Huang C, Zhang H. 2011. Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sensing of Environment. 115(2):725–737.
  • Lee Z, Carder KL, Arnone RA. 2002. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters. Appl Opt. 41(27):5755–5772.
  • Lunetta RS, Schaeffer BA, Stumpf RP, Keith D, Jacobs SA, Murphy MS. 2015. Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA. Remote Sens Environ. 157:24–34.
  • Machado I, Barreiro M, Calliari D. 2013. Variability of chlorophyll-a in the Southwestern Atlantic from satellite images: seasonal cycle and ENSO influences. Continen Shelf Resear. 53:102–109.
  • Maciel FP, Pedocchi F. 2022. Evaluation of ACOLITE atmospheric correction methods for Landsat-8 and Sentinel-2 in the Río de la Plata turbid coastal waters. Inter J Remote Sens. 43(1):215–240.
  • Maciel FP, Santoro PE, Pedocchi F. 2021. Spatio-temporal dynamics of the Río de la Plata turbidity front; combining remote sensing with in-situ measurements and numerical modeling. Continen Shelf Resear. 213:104301.
  • Mannino A, Novak MG, Nelson N. B, Belz M, Berthon J-F, Blough N. V, Boss E. 2019. Measurement protocol of absorption by chromophoric dissolved organic matter (CDOM) and other dissolved materials. In: A. Mannino and M. G. Novak, editors. Inherent Optical Property Measurements and Protocols: absorption Coefficient. Darmouth, NS, Canada: IOCCG.
  • Martínez de la Escalera G, Segura AM, Kruk C, Ghattas B, Cohan FM, Iriarte A, Piccini C. 2022. Genotyping and multivariate regression trees reveal ecological diversification within the microcystis aeruginosa complex along a wide environmental gradient. Appl Environ Microbiol. 88(3): e01475–21
  • Matthews MW. 2011. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Inter J Remote Sens. 32(21):6855–6899.
  • Matthews MW, Bernard S, Robertson L. 2012. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens Environ. 124:637–652.
  • Matthews MW, Odermatt D. 2015. Improved algorithm for routine monitoring of cyanobacteria and eutrophication in inland and near-coastal waters. Remote Sens Environ. 156:374–382.
  • Menéndez M. 2017. Determinación de sólidos suspendidos totales, fijos y volátiles en aguas naturales y efluentes líquidos. Método gravimétrico. Manual 1020UY. Uruguay: Dirección Nacional de Medio Ambiente.
  • Mishra S, Mishra D. R. 2012. Normalized difference chlorophyll index: a novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens Environ. 117:394–406.
  • Mobley CD. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Appl Opt. 38(36):7442–7455.
  • Moreira D, Simionato CG, Gohin F, Cayocca F, Luz M, Tejedor C. 2013. Suspended matter mean distribution and seasonal cycle in the Río de la Plata estuary and the adjacent shelf from ocean color satellite (MODIS) and in-situ observations. Continen Shelf Resear. 68:51–66.
  • Morel A, Prieur L. 1977. Analysis of variations in ocean color. Limnol Oceanogr. 22(4):709–722.
  • Moses W, Gitelson A, Berdnikov S, Povazhnyy V. 2009. Satellite estimation of chlorophyll-a concentration using the red and NIR bands of MERIS—The Azov Sea case study. IEEE Geosci Remote Sens Lett. 6(4):845–849.
  • Moses WJ, Gitelson AA, Berdnikov S, Saprygin V, Povazhnyi V. 2012. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens Environ. 121:118–124.
  • Nagy GJ, Gómez-Erache M, López CH, Perdomo AC. 2002. Distribution patterns of nutrients and symptoms of eutrophication in the Rio de la Plata River Estuary system. In: E. Orive, M. Elliott, and V.N. de Jonge, editors. Nutrients and Eutrophication in Estuaries and Coastal Waters. Developments in Hydrobiology. Vol. 164. p. 125–139. Dordrecht: Springer.
  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae. 14:313–334.
  • Pahlevan N, Smith B, Alikas K, Anstee J, Barbosa C, Binding C, Bresciani M, Cremella B, Giardino C, Gurlin D, et al. 2022. Simultaneous retrieval of selected optical water quality indicators from Landsat-8, Sentinel-2, and Sentinel-3. Remote Sens Environ. 270:112860.
  • Pahlevan N, Smith B, Schalles J, Binding C, Cao Z, Ma R, Alikas K, Kangro K, Gurlin D, Hà N, et al. 2020. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: a machine-learning approach. Remote Sens Environ. 240:111604.
  • Pilotto LS, Douglas RM, Burch MD, Cameron S, Beers M, Rouch GJ, Robinson P, Kirk M, Cowie CT, Hardiman S, et al. 1997. Health effects of recreational exposure to cyanobacteria (blue-green) during recreational water-related activities. Aust N Z J Public Health. 21(6):562–566.
  • Pirez M, Gonzalez-Sapienza G, Sienra D, Ferrari G, Last M, Last JA, Brena BM. 2013. Limited analytical capacity for cyanotoxins in developing countries may hide serious environmental health problems: simple and affordable methods may be the answer. J Environ Manage. 114:63–71.
  • Ruddick K, Lacroix G, Park Y, Rousseau V, Cauwer VD, Sterckx S. 2008. Overview of Ocean Colour: theoretical background, sensors and applicability for the detection and monitoring of harmful algae blooms (capabilities and limitations). Real-time coastal observing systems for marine ecosystem dynamics and harmful algal blooms. Oceanographic methodology series. Paris: UNESCO Publishing.
  • Sathicq MB, Gómez N, Andrinolo D, Sedán D, Donadelli JL. 2014. Temporal distribution of cyanobacteria in the coast of a shallow temperate estuary (Río de la Plata): some implications for its monitoring. Environ Monit Assess. 186(11):7115–7125.
  • Schaeffer BA, Loftin K, Stumpf RP, Werdell PJ. 2015. Agencies collaborate, develop a cyanobacteria assessment network. EOS. 96
  • Shanmugam P. 2011. A new bio-optical algorithm for the remote sensing of algal blooms in complex ocean waters. J Geophys Res. 116(C4):C04016.
  • Sournia, A. (Ed.). 1978. Phytoplankton manual. Monographs on oceanographic methodology 6. Paris: UNESCO.
  • Stumpf MP, Tyler MA. 1988. Satellite detection of bloom and pigment distributions in Estuaries. Remote Sens Environ. 24(3):385–404.
  • Stumpf RP, Davis TW, Wynne TT, Graham JL, Loftin KA, Johengen TH, Gossiaux D, Palladino D, Burtner A. 2016. Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria. Harmful Algae. 54:160–173.
  • Teta R, Romano V, Sala GD, Picchio S, De Sterlich C, Mangoni A, Tullio GD, Costantino V, Lega M. 2017. Cyanobacteria as indicators of water quality in Campania coasts, Italy: a monitoring strategy combining remote/proximal sensing and in situ data. Environ Res Lett. 12(2):24001.
  • Urquhart EA, Schaeffer BA, Stumpf RP, Loftin KA, Werdell PJ. 2017. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Harmful Algae. 67:144–152.
  • Vanhellemont Q. 2019. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens Environ. 225:175–192.
  • Vanhellemont Q, Ruddick K. 2015. Advantages of high quality SWIR bands for ocean colour processing: examples from Landsat-8. Remote Sens Environ. 161:89–106.
  • Wynne TT, Stumpf RP, Tomlinson MC, Warner RA, Tester PA, Dyble J, Fahnenstiel GL. 2008. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Inter J Remote Sens. 29(12):3665–3672.