665
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The morphing for continuous generalization of linear features based on Dynamic Time Warping distance

ORCID Icon & ORCID Icon
Article: 2197516 | Received 08 Feb 2023, Accepted 27 Mar 2023, Published online: 03 Apr 2023

References

  • Belgiu M, Zhou Y, Marshall M, Stein A. 2020. Dynamic time warping for crops mapping. Int Arch Photogramm Remote Sens Spatial Inf Sci. 43:947–951.
  • Berndt DJ, Clifford J. 1994. Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Seattle, WA: AAAI Press; p. 359–370.
  • Cecconi A, Galanda M. 2002. Adaptive zooming in web cartography. In: Computer Graphics Forum. Vol. 21; p. 787–799.
  • Cecconi A. 2003. Integration of cartographic generalization and multi-scale databases for enhanced web mapping [doctoral dissertation]. Switzerland: ETH Zurich.
  • Csillik O, Belgiu M, Asner GP, Kelly M. 2019. Object-based time-constrained dynamic time warping classification of crops using sentinel-2. Remote Sensing. 11(10):1257. Available from: https://www.mdpi.com/2072-4292/11/10/1257.
  • Danciger J, Devadoss SL, Mugno J, Sheehy D, Ward R. 2009. Shape deformation in continuous map generalization. Geoinformatica. 13(2):203–221.
  • Deng M, Peng D. 2015. Morphing linear features based on their entire structures. Trans GIS. 19(5):653–677. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/tgis.12111.
  • Du J, Wu F, Xing R, Gong X, Yu L. 2022. Segmentation and sampling method for complex polyline generalization based on a generative adversarial network. Geocarto Int. 37(14):4158–4180.
  • Fan W. 2014. Matching and classification model for multi-scale transformation and representation of spatial data. J Geomatics Sci Technol. 31(4):331–335.
  • Gao A, Li J, Chen K. 2020. A morphing approach for continuous generalization of linear map features. PLoS ONE. 15(12):e0243328.
  • Guan X, Liu G, Huang C, Meng X, Liu Q, Wu C, Ablat X, Chen Z, Wang Q. 2018. An open-boundary locally weighted dynamic time warping method for cropland mapping. ISPRS Int J Geo-Inf. 7(2):75. Available from: https://www.mdpi.com/2220-9964/7/2/75.
  • Han L, Gao C, Zhang S, Li D, Sun Z, Yang G, Li J, Zhang C, Shao G. 2019. Speech recognition algorithm of substation inspection robot based on improved DTW. In: Advances in Intelligent, Interactive Systems and Applications: Proceedings of the 3rd International Conference on Intelligent, Interactive Systems and Applications (IISA2018) 3. Springer; p. 47–54.
  • Izakian H, Pedrycz W, Jamal I. 2015. Fuzzy clustering of time series data using dynamic time warping distance. Eng Appl Artif Intell. 39:235–244. Available from: https://www.sciencedirect.com/science/article/pii/S0952197614003078.
  • Jiang Y, Qi Y, Wang W, Bent B, Avram R, Olgin J, Dunn J. 2020. EventDTW: An improved dynamic time warping algorithm for aligning biomedical signals of nonuniform sampling frequencies. Sensors. 20(9):2700.
  • Kaya H, Gündüz-Öğüdücü Ş., Ş., 2015. A distance based time series classification framework. Inf Syst. 51:27–42.
  • Li J, Ai T, Liu P, Yang M. 2017a. Continuous scale transformations of linear features using simulated annealing-based morphing. ISPRS Int J Geo-Inf. 6(8):242.
  • Li J, Fang W. 2018. Morphing polylines by preserving local neighborhood structures. Geomatics Inf Sci Wuhan Univ. 43(08):1138–1143.
  • Li J, Li X, Xie T. 2017b. Morphing of building footprints using a turning angle function. ISPRS Int J Geo-Inf. 6(6):173.
  • Li J, Liu P, Yu W, Cheng X. 2018. The morphing of geographical features by Fourier transformation. PLoS ONE. 13(1):e0191136.
  • Li Z, Zhou Q. 2012. Integration of linear and areal hierarchies for continuous multi-scale representation of road networks. Int J Geogr Inf Sci. 26(5):855–880.
  • Liu L, Wang G, Zhang B, Guo B, Shum H-Y. 2004. Perceptually based approach for planar shape morphing. In: 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings.
  • Liu P, Li X, Liu W, Ai T. 2016. Fourier-based multi-scale representation and progressive transmission of cartographic curves on the internet. Cartogr Geogr Inf Sci. 43(5):454–468.
  • Liu P, Xiao T, Xiao J, Ai T. 2020. A multi-scale representation model of polyline based on head/tail breaks. Int J Geogr Inf Sci. 34(11):2275–2295.
  • Lonergan M, Jones C. 2001. An iterative displacement method for conflict resolution in map generalization. Algorithmica. 30(2):287–301.
  • Matsuoka A, Yoshioka F, Ozawa S, Takebe J. 2019. Development of three-dimensional facial expression models using morphing methods for fabricating facial prostheses. J Prosthodontic Res. 63(1):66–72. Available from: https://www.sciencedirect.com/science/article/pii/S1883195818302287.
  • Nöllenburg M, Merrick D, Wolff A, Benkert M. 2008. Morphing polylines: A step towards continuous generalization. Comput Environ Urban Syst. 32(4):248–260.
  • Pantazis D, Karathanasis B, Kassoli M, Koukofikis A, Stratakis P. 2009b. Morphing techniques: towards new methods for raster based cartographic generalization. In: Proceedings of the 24th International Cartographic Conference.
  • Pantazis DN, Karathanasis B, Kassoli M, Koukofikis A. 2009a. Are the morphing techniques useful for cartographic generalization? In: Alenka Krek, Massimo Rumor, Sisi Zlatanova, Elfriede M. Fendel, editors. Urban and regional data management. London: CRC Press; p. 207–216.
  • Peng D, Wolff A, Haunert J-H. 2016. Continuous generalization of administrative boundaries based on compatible triangulations. In: Geospatial Data in a Changing World: Selected Papers of the 19th Agile Conference on Geographic Information Science.
  • Permanasari Y, Harahap EH, Ali EP. 2019. Speech recognition using dynamic time warping. In: Journal of physics: Conference Series. Vol. 1366. IOP Publishing; p. 012091.
  • Sederberg T, Gao P, Wang G, Mu H. 1993. 2-D shape blending: An intrinsic solution to the vertex path problem. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques.
  • Sederberg T, Greenwood E. 1992. A physically based approach to 2-d shape blending. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques. Vol. 26; p. 25–34.
  • Shen Y, Ai T, Li J, Huang L, Li W. 2020. A progressive method for the collapse of river representation considering geographical characteristics. Int J Digital Earth. 13(12):1366–1390.
  • Steyvers M. 1999. Morphing techniques for manipulating face images. Behav Res Methods Instrum Comput. 31(2):359–369.
  • Stoter J, Burghardt D, Duchêne C, Baella B, Bakker N, Blok C, Pla M, Regnauld N, Touya G, Schmid S. 2009. Methodology for evaluating automated map generalization in commercial software. Comput Environ Urban Syst. 33(5):311–324. Available from: https://www.sciencedirect.com/science/article/pii/S0198971509000465.
  • Šuba R, Meijers M, Oosterom P. 2016. Continuous road network generalization throughout all scales. Int J Geo-Inf. 5(8):145.
  • Surazhsky V, Gotsman C. 2003. Intrinsic morphing of compatible triangulations. Int J Shape Model. 09(02):191–201.
  • Van Kreveld M. 2001. Smooth generalization for continuous zooming. In: Proceedings of the 20th International Geographic Conference; p. 2180–2185.
  • Whited B, Rossignac J. 2009. B-morphs between b-compatible curves in the plane. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling
  • Wilson ID, Ware JM, Ware JA. 2003. A genetic algorithm approach to cartographic map generalisation. Comput Ind. 52(3):291–304. Available from: https://www.sciencedirect.com/science/article/pii/S0166361503001325.
  • Yamazaki S. 2007. Warping and morphing. In: Benjamin W. Wah, editor. Wiley encyclopedia of computer science and engineering. Wiley Online Library.
  • Yang B, Purves R, Weibel R. 2007. Efficient transmission of vector data over the internet. Int J Geogr Inf Sci. 21(2):215–237.
  • Yang W, Feng J. 2009. 2d shape morphing via automatic feature matching and hierarchical interpolation. Comput Graphics. 33(3):414–423. Available from: https://www.sciencedirect.com/science/article/pii/S0097849309000387.
  • Yuefeng Z. 1996. A fuzzy approach to digital image warping. IEEE Comput Graphics Appl. 16(4):34–41.
  • Zhu L, Zhong S, Tu W, Zheng J, He S, Bao J, Huang C. 2019. Assessing spatial accessibility to medical resources at the community level in shenzhen, china. Int J Environ Res Public Health. 16(2):242.