2,765
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Predictions of land use/land cover change, drivers, and their implications on water availability for irrigation in the Vea catchment, Ghana

ORCID Icon, &
Article: 2243093 | Received 08 Jun 2023, Accepted 27 Jul 2023, Published online: 21 Aug 2023

References

  • Larbi I, Forkuor G, Hountondji FCC, Agyare WA, Mama D. 2019. Predictive land use change under business-as-usual and afforestation scenarios in the Vea Catchment, West Africa. IJARSG. 8(1):3011–3029. doi:10.23953/cloud.ijarsg.416.
  • Abebe G, Getachew D, Ewunetu A. 2022. Analysing land use/land cover changes and its dynamics using remote sensing and GIS in Gubalafito district, Northeastern Ethiopia. SN Appl Sci. 4(1):30. doi:10.1007/s42452-021-04915-8.
  • Abbas Z, Jaber HS. 2020. Accuracy assessment of supervised classification methods for extraction land use maps using remote sensing and GIS techniques. IOP Conf Ser: Mater Sci Eng. 745(1):012166. doi:10.1088/1757-899X/745/1/012166.
  • Abdurahman A, Yirsaw E, Nigussie W, Hundera K. 2023. Past and future land-use/land-cover change trends and its potential drivers in Koore’s agricultural landscape, Southern Ethiopia. Geocarto Int. 38(1):1–25. doi:10.1080/10106049.2023.2229952.
  • Aburas MM, Ho YM, Ramli MF, Ash’aari ZH. 2016. The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review. Int J Appl Earth Obs Geoinf. 52:380–389. doi:10.1016/j.jag.2016.07.007.
  • Brown JF, Tollerud HJ, Barber CP, Zhou Q, Dwyer JL, Vogelmann JE, Loveland TR, Woodcock CE, Stehman SV, Zhu Z, et al. 2020. Lessons learned implementing an operational continuous United States national land change monitoring capability: the Land Change Monitoring, Assessment, and Projection (LCMAP) approach. Remote Sens Environ. 238:111356. doi:10.1016/j.rse.2019.111356.
  • Chang Y, Hou K, Li X, Zhang Y, Chen P. 2018. Review of land use and land cover change research progress. IOP Conf Ser: earth Environ Sci. 113:012087. doi:10.1088/1755-1315/113/1/012087.
  • Chisanga CB, Shepande CC, Nkonde E. 2022. CA-Markov approach in dynamic modelling of LULCC using ESA CCI products over Zambia. In Geographic information systems and applications in coastal studies. London: IntechOpen.
  • Daba MH, You S. 2022. Quantitatively assessing the future land-use/land-cover changes and their driving factors in the upper stream of the Awash River based on the CA–Markov model and their implications for water resources management. Sustainability. 14(3):1538. doi:10.3390/su14031538.
  • Eastman JR, Toledano J. 2018. A short presentation of the land change modeler (LCM). In: Camacho Olmedo M, Paegelow M, Mas JF, et al., Editors. Geomatic approaches for modeling land change scenarios; p. 499–505.
  • FAO. 2011. The state of the world’s land and water resources for food and agriculture managing systems at risk. Rome: Food and Agriculture Organization of the United Nations.
  • FAO. 2020. Global forest assessment resources 2020 (No.163). Rome, Italy: Forestry Paper.
  • Foody GM. 2020. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens Environ. 239:111630. doi:10.1016/j.rse.2019.111630.
  • Friedenthal J, Maxwell SM, Munné S, Kramer Y, McCulloh DH, McCaffrey C, Grifo JA. 2018. Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil Steril. 109(4):627–632. doi:10.1016/j.fertnstert.2017.12.017.
  • Gashaw T, Tulu T, Argaw M, Worqlul AW. 2017. Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ Syst Res. 6(1):1–15. doi:10.1186/s40068-016-0078-x.
  • Getachew B, Manjunatha BR. 2022. Impacts of land‐use change on the hydrology of Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Glob Chall. 6(8):2200041. doi:10.1002/gch2.202200041.
  • Gharaibeh A, Shaamala A, Obeidat R, Al-Kofahi S. 2020. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon. 6(9):e05092. doi:10.1016/j.heliyon.2020.e05092.
  • Govender T, Dube T, Shoko C. 2022. Remote sensing of land use-land cover change and climate variability on hydrological processes in Sub-Saharan Africa: key scientific strides and challenges. Geocarto Int. 37(25):10925–10949. doi:10.1080/10106049.2022.2043451.
  • Hamad R, Balzter H, Kolo K. 2018. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability. 10(10):3421. doi:10.3390/su10103421.
  • Han H, Yang C, Song J. 2015. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability. 7(4):4260–4279. doi:10.3390/su7044260.
  • Hansen RE. 2022. Change detection on shipwrecks using synthetic aperture sonar–North Sea Wrecks Task 3.5 Deep Water Case Study.
  • Hoque M, Cui S, Islam I, Xu L, Ding S. 2021. Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh. Ecol Indic. 130:107954. doi:10.1016/j.ecolind.2021.107954.
  • Hua A. 2017a. Application of Ca-Markov model and land use/land cover changes in Malacca River Watershed, Malaysia. Appl Ecol Env Res. 15(4):605–622. doi:10.15666/aeer/1504_605622.
  • Hua AK. 2017b. Land use land cover changes in detection of water quality: a study based on remote sensing and multivariate statistics. J Environ Public Health. 2017:7515130. doi:10.1155/2017/7515130.
  • Iannella M, De Simone W, D'Alessandro P, Biondi M. 2021. Climate change favours connectivity between virus-bearing pest and rice cultivations in sub-Saharan Africa, depressing local economies. PeerJ. 9:e12387. doi:10.7717/peerj.12387.
  • Kafy, A. A., Raikwar, V., Rakib, A. A., Kona, M. A., Ferdousi, J. (2021). Geospatial approach for developing an integrated water resource management plan in Rajshahi, Bangladesh. Environ Chall. 4, 100139. doi:10.1016/j.envc.2021.100139.
  • Kamwi JM, Cho MA, Kaetsch C, Manda SO, Graz FP, Chirwa PW. 2018. Assessing the spatial drivers of land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Land. 7(4):131. doi:10.3390/land7040131.
  • Kelly C, Ferrara A, Wilson GA, Ripullone F, Nolè A, Harmer N, Salvati L. 2015. Community resilience and land degradation in forest and shrubland socio-ecological systems: evidence from Gorgoglione, Basilicata, Italy. Land Use Policy. 46:11–20. doi:10.1016/j.landusepol.2015.01.026.
  • Khawaldah H, Farhan I, Alzboun N. 2020. Simulation and prediction of land use and land cover change using GIS, remote sensing and CA-Markov model. Global J Environ Sci Manag. 6(2):215–232.
  • Kuma HG, Feyessa FF, Demissie TA. 2022. Landuse/land-cover changes and implications in Southern Ethiopia: evidence from remote sensing and informants. Heliyon. 8(3):e09071. doi:10.1016/j.heliyon.2022.e09071.
  • Leta MK, Demissie TA, Tränckner J. 2021. Modeling and prediction of land use land cover change dynamics based on land change modeler (Lcm) in nashe watershed, upper blue Nile Basin, Ethiopia. Sustainability. 13(7):3740. doi:10.3390/su13073740.
  • Limantol AM, Keith BE, Azabre BA, Lennartz B. 2016. Farmers’ perception and adaptation practice to climate variability and change: a case study of the Vea catchment in Ghana. Springerplus. 5(1):830. doi:10.1186/s40064-016-2433-9.
  • Lu D, Li G, Moran E. 2014. Current situation and needs of change detection techniques. Int J Image Data Fusion. 5(1):13–38. doi:10.1080/19479832.2013.868372.
  • Mahamud M, Samat N, Tan M, Chan N, Tew Y. 2019. Prediction of future land use land cover changes of Kelantan, Malaysia. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
  • Mahmoud SH, Alazba A. 2016. Land cover change dynamics mapping and predictions using EO data and a GIS-cellular automata model: the case of Al-Baha region, Kingdom of Saudi Arabia. Arab J Geosci. 9(5):1–20. doi:10.1007/s12517-016-2439-1.
  • Megahed Y, Cabral P, Silva J, Caetano M. 2015. Land cover mapping analysis and urban growth modelling using remote sensing techniques in Greater Cairo Region—Egypt. IJGI. 4(3):1750–1769. doi:10.3390/ijgi4031750.
  • Mishra K, Boynton L, Mishra A. 2014. Driving employee engagement: the expanded role of internal communications. Int J Bus Commun. 51(2):183–202. doi:10.1177/2329488414525399.
  • Mohajane M, Essahlaoui A, Oudija F, Hafyani ME, Hmaidi AE, Ouali AE, Randazzo G, Teodoro AC. 2018. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM + and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments. 5(12):131. doi:10.3390/environments5120131.
  • Muhammad R, Zhang W, Abbas Z, Guo F, Gwiazdzinski L. 2022. Spatiotemporal change analysis and prediction of future land use and land cover changes using QGIS MOLUSCE plugin and remote sensing big data: a case study of Linyi, China. Land. 11(3):419. doi:10.3390/land11030419.
  • Munthali M, Mustak S, Adeola A, Botai J, Singh S, Davis N. 2020. Modelling land use and land cover dynamics of Dedza district of Malawi using hybrid Cellular Automata and Markov model. Remote Sens Appl: Soc Environ. 17:100276. doi:10.1016/j.rsase.2019.100276.
  • Nadoushan MA, Soffianian A, Alebrahim A. 2015. Modeling land use/cover changes by the combination of Markov chain and cellular automata Markov (CA-Markov) models. J Earth Environ Health Sci. 1(1):16. doi:10.4103/2423-7752.159922.
  • Nageswaran S, Arunkumar G, Bisht AK, Mewada S, Kumar J, Jawarneh M, Asenso E. 2022. Lung cancer classification and prediction using machine learning and image processing. Biomed Res Int. 2022:1755460. doi:10.1155/2022/1755460.
  • Namugize JN, Jewitt G, Graham M. 2018. Effects of land use and land cover changes on water quality in the uMngeni river catchment, South Africa. Phys Chem Earth Parts a/b/c. 105:247–264. doi:10.1016/j.pce.2018.03.013.
  • Nath V, Chattopadhyay C, Desai KA. 2023. NSLNet: an improved deep learning model for steel surface defect classification utilizing small training datasets. Manuf Lett. 35:39–42. doi:10.1016/j.mfglet.2022.10.001.
  • Olmedo MTC, Pontius RG, Jr, Paegelow M, Mas J-F. 2015. Comparison of simulation models in terms of quantity and allocation of land change. Environ Modell Softw. 69:214–221. doi:10.1016/j.envsoft.2015.03.003.
  • Pérez-Vega A, Mas JF, Ligmann-Zielinska A. 2012. Comparing two approaches to land use/cover change modeling and their implications for the assessment of biodiversity loss in a deciduous tropical forest. Environ Model Softw. 29(1):11–23. doi:10.1016/j.envsoft.2011.09.011.
  • Qasim M, Hubacek K, Termansen M, Fleskens L. 2013. Modelling land use change across elevation gradients in district Swat, Pakistan. Reg Environ Change. 13(3):567–581. doi:10.1007/s10113-012-0395-1.
  • Roy DP, Wulder MA, Loveland TR, Woodcock CE, Allen RG, Anderson MC, Helder D, Irons JR, Johnson DM, Kennedy R, et al. 2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sens Environ. 145:154–172. doi:10.1016/j.rse.2014.02.001.
  • Rwanga SS, Ndambuki JM. 2017. Accuracy assessment of land use/land cover classification using remote sensing and GIS. IJG. 08(04):611–622. doi:10.4236/ijg.2017.84033.
  • Shawul AA, Chakma S. 2019. Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environ Earth Sci. 78(5):141. doi:10.1007/s12665-019-8154-y.
  • Sleeter BM, Sohl TL, Loveland TR, Auch RF, Acevedo W, Drummond MA, Sayler KL, Stehman SV. 2013. Land-cover change in the conterminous United States from 1973 to 2000. Global Environ Change. 23(4):733–748. doi:10.1016/j.gloenvcha.2013.03.006.
  • Springgay E, Casallas Ramirez S, Janzen S, Vannozzi Brito V. 2019. The forest–water nexus: an international perspective. Forests, 10(10), 915. doi:10.3390/f10100915.
  • Vázquez-Quintero G, Solís-Moreno R, Pompa-García M, Villarreal-Guerrero F, Pinedo-Alvarez C, Pinedo-Alvarez A. 2016. Detection and projection of forest changes by using the Markov Chain Model and cellular automata. Sustainability. 8(3):236. doi:10.3390/su8030236.
  • Visa S, Ramsay B, Ralescu AL, Van Der Knaap E. 2011. Confusion matrix-based feature selection. Maics. 710(1):120–127.
  • Wu K-y, Zhang H. 2012. Land use dynamics, built-up land expansion patterns, and driving forces analysis of the fast-growing Hangzhou metropolitan area, eastern China (1978–2008). Appl Geogr. 34:137–145. doi:10.1016/j.apgeog.2011.11.006.
  • Xie C, Batty M, Zhao K. 2007. Simulating emergent urban form using agent-based modeling: Desakota in the Suzhou-Wuxian region in China. Ann. Assoc. Am. Geogr. 97(3):477–495. doi:10.1111/j.1467-8306.2007.00559.x.
  • Xing H, Meng Y, Shi Y. 2018. A dynamic human activity‐driven model for mixed land use evaluation using social media data. Trans GIS. 22(5):1130–1151. doi:10.1111/tgis.12447.
  • Yirsaw E, Wu W, Shi X, Temesgen H, Bekele B. 2017. Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability. 9(7):1204. doi:10.3390/su9071204.
  • Zhang CL, Zhang TJ, Guo YN, Yang LQ, He MW, Shi JZ, Ni JX. 2008. Effect of neurolytic celiac plexus block guided by computerized tomography on pancreatic cancer pain. Dig Dis Sci. 53(3):856–860. doi:10.1007/s10620-007-9905-2.
  • Zhou X, Chen H. 2018. Impact of urbanization-related land use land cover changes and urban morphology changes on the urban heat island phenomenon. Sci Total Environ. 635:1467–1476. doi:10.1016/j.scitotenv.2018.04.091.