2,225
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Deep learning methods applied to digital elevation models: state of the art

, , , &
Article: 2252389 | Received 18 May 2023, Accepted 17 Aug 2023, Published online: 06 Sep 2023

References

  • Adam JM, Liu W, Zang Y, Afzal MK, Bello SA, Muhammad AU, Wang C, Li J. 2023. Deep learning-based semantic segmentation of urban-scale 3d meshes in remote sensing: a survey. Int J Appl Earth Obs Geoinf. 121:103365. doi: 10.1016/j.jag.2023.103365.
  • Ali-Dib M, Menou K, Jackson AP, Zhu C, Hammond N. 2020. Automated crater shape retrieval using weakly-supervised deep learning. Icarus. 345:113749. doi: 10.1016/j.icarus.2020.113749.
  • Bachhofner S, Loghin A, Otepka J, Pfeifer N, Hornacek M, Siposova A, Schmidinger N, Hornik K, Schiller N, Kähler O. 2020. Generalized sparse convolutional neural networks for semantic segmentation of point clouds derived from tri-stereo satellite imagery. Remote Sens. 12(8):1289. doi: 10.3390/rs12081289.
  • Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M. 2004. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for gis-ready information. ISPRS J Photogramm Remote Sens. 58(3-4):239–258. doi: 10.1016/j.isprsjprs.2003.10.002.
  • Blaschke T. 2010. Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens. 65(1):2–16. doi: 10.1016/j.isprsjprs.2009.06.004.
  • Boulton SJ, Stokes M. 2018. Which DEM is best for analyzing fluvial landscape development in mountainous terrains? Geomorphology. 310:168–187. doi: 10.1016/j.geomorph.2018.03.002.
  • Braga JR, Peripato V, Dalagnol R, P. Ferreira M, Tarabalka Y, Aragão LE, F. de Campos Velho H, Shiguemori EH, Wagner FH. 2020. Tree crown delineation algorithm based on a convolutional neural network. Remote Sens. 12(8):1288. doi: 10.3390/rs12081288.
  • Che E, Jung J, Olsen MJ. 2019. Object recognition, segmentation, and classification of mobile laser scanning point clouds: a state of the art review. Sensors. 19(4):810. doi: 10.3390/s19040810.
  • Chen Y, Fan R, Yang X, Wang J, Latif A. 2018. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water. 10(5):585. doi: 10.3390/w10050585.
  • Chen Y, Tang L, Kan Z, Bilal M, Li Q. 2020. A novel water body extraction neural network (wbe-nn) for optical high-resolution multispectral imagery. J Hydrol. 588:125092. doi: 10.1016/j.jhydrol.2020.125092.
  • Chen Z, Wang X, Xu Z. 2016. Convolutional neural network based DEM super resolution. Int Arch Photogramm Remote Sens Spat Inf Sci. 41:247–250
  • Cheng G, Han J, Lu X. 2017. Remote sensing image scene classification: benchmark and state of the art. Proc IEEE. 105(10):1865–1883. doi: 10.1109/JPROC.2017.2675998.
  • Cheng G, Xie X, Han J, Guo L, Xia G. 2020. Remote sensing image scene classification meets deep learning: challenges, methods, benchmarks, and opportunities. IEEE J Sel Top Appl Earth Obs Remote Sens. 13:3735–3756. doi: 10.1109/JSTARS.2020.3005403.
  • Clubb FJ, Mudd SM, Milodowski DT, Hurst MD, Slater LJ. 2014. Objective extraction of channel heads from high-resolution topographic data. Water Resour Res. 50(5):4283–4304. doi: 10.1002/2013WR015167.
  • Cohen JP, Ding W. 2014. Crater detection via genetic search methods to reduce image features. Adv Space Res. 53(12):1768–1782. doi: 10.1016/j.asr.2013.05.010.
  • Cohen JP, Liu S, Ding W. 2011. Genetically enhanced feature selection of discriminative planetary crater image features. AI 2011: Advances in Artificial Intelligence: 24th Australasian Joint Conference, Perth, Australia, December 5–8, 2011. Proceedings 24. Springer. p. 61–71
  • Cohen JP, Lo HZ, Lu T, Ding W. 2016. Crater detection via convolutional neural networks. arXiv Preprint arXiv:1601.00978.
  • Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. 2018. Generative adversarial networks: an overview. IEEE Signal Process Mag. 35(1):53–65. doi: 10.1109/MSP.2017.2765202.
  • Dai J, Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y. 2017. Deformable convolutional networks. Proceedings of the IEEE International Conference on Computer Vision. p. 764–773.
  • Demiray BZ, Sit M, Demir I. 2021. D-srgan: dem super-resolution with generative adversarial networks. SN Comput Sci. 2:1–11. doi: 10.1007/s42979-020-00442-2.
  • Deng J, Dong W, Socher R, Li L, Li K, Fei-Fei L. 2009. Imagenet: a large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition. . IEEE. p. 248–255.
  • Di K, Li W, Yue Z, Sun Y, Liu Y. 2014. A machine learning approach to crater detection from topographic data. Adv Space Res. 54(11):2419–2429. doi: 10.1016/j.asr.2014.08.018.
  • Dong C, Loy CC, Tang X. 2016. Accelerating the super-resolution convolutional neural network. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part II 14. Springer. p. 391–407.
  • Dong G, Chen F, Ren P. 2018. Filling srtm void data via conditional adversarial networks. IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium. IEEE. p. 7441–7443.
  • Dong G, Huang W, Smith WA, Ren P. 2019. Filling voids in elevation models using a shadow-constrained convolutional neural network. IEEE Geosci Remote Sens Lett. 17(4):592–596. doi: 10.1109/LGRS.2019.2926530.
  • Dong G, Huang W, Smith WA, Ren P. 2020. A shadow constrained conditional generative adversarial net for srtm data restoration. Remote Sens Environ. 237:111602. doi: 10.1016/j.rse.2019.111602.
  • Drăguţ L, Blaschke T. 2006. Automated classification of landform elements using object-based image analysis. Geomorphology. 81(3–4):330–344. doi: 10.1016/j.geomorph.2006.04.013.
  • Duan L, Hu X. 2019. Multiscale refinement network for water-body segmentation in high-resolution satellite imagery. IEEE Geosci Remote Sens Lett. 17(4):686–690. doi: 10.1109/LGRS.2019.2926412.
  • Ehsani AH, Quiel F. 2008. Geomorphometric feature analysis using morphometric parameterization and artificial neural networks. Geomorphology. 99(1-4):1–12. doi: 10.1016/j.geomorph.2007.10.002.
  • Emami E, Bebis G, Nefian A, Fong T. 2015. Automatic crater detection using convex grouping and convolutional neural networks. In Advances in Visual Computing: 11th International Symposium, ISVC 2015, Las Vegas, NV, USA, December 14 – 16, 2015, Proceedings, Part II 11. Springer. p. 213–224.
  • Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L. 2007. The shuttle radar topography mission. Rev Geophys. 45(2):1–33 doi: 10.1029/2005RG000183.
  • Feng W, Sui H, Huang W, Xu C, An K. 2018. Water body extraction from very high-resolution remote sensing imagery using deep u-net and a superpixel-based conditional random field model. IEEE Geosci Remote Sens Lett. 16(4):618–622. doi: 10.1109/LGRS.2018.2879492.
  • Ganerød AJ, Bakkestuen V, Calovi M, Fredin O, Rød JK. 2023. Where are the outcrops? Automatic delineation of bedrock from sediments using deep-learning techniques. Appl Comput Geosci. 18:100119. doi: 10.1016/j.acags.2023.100119.
  • Gavriil K, Muntingh G, Barrowclough OJ. 2019. Void filling of digital elevation models with deep generative models. IEEE Geosci Remote Sens Lett. 16(10):1645–1649. doi: 10.1109/LGRS.2019.2902222.
  • Gebrehiwot A, Hashemi-Beni L, Thompson G, Kordjamshidi P, Langan TE. 2019. Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data. Sensors. 19(7):1486. doi: 10.3390/s19071486.
  • Girshick R. 2015. Fast r-Cnn. Proceedings of the IEEE International Conference on Computer Vision . p. 1440–1448.
  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2020. Generative adversarial networks. Commun ACM. 63(11):139–144. doi: 10.1145/3422622.
  • Grilli E, Özdemir E, Remondino F. 2019. Application of machine and deep learning strategies for the classification of heritage point clouds. Int Arch Photogramm Remote Sens Spat Inf Sci. 42:447–454.
  • Hall O, Falorni G, Bras RL. 2005. Characterization and quantification of data voids in the shuttle radar topography mission data. IEEE Geosci Remote Sens Lett. 2(2):177–181. doi: 10.1109/LGRS.2004.842447.
  • Han K, Xiao A, Wu E, Guo J, Xu C, Wang Y. 2021. Transformer in transformer. Adv Neural Inf Process Syst. 34:15908–15919.
  • Han X, Ma X, Li H, Chen Z. 2023. A global-information-constrained deep learning network for digital elevation model super-resolution. Remote Sens. 15(2):305. doi: 10.3390/rs15020305.
  • Hashimoto S, Mori K. 2019. Lunar crater detection based on grid partition using deep learning. 2019 IEEE 13th International Symposium on Applied Computational Intelligence and Informatics (SACI). IEEE . p. 75–80. doi: 10.1109/SACI46893.2019.9111474.
  • Hay GJ, Castilla G, Wulder MA, Ruiz JR. 2005. An automated object-based approach for the multiscale image segmentation of forest scenes. Int J Appl Earth Obs Geoinf. 7(4):339–359. doi: 10.1016/j.jag.2005.06.005.
  • He K, Gkioxari G, Dollár P, Girshick R. 2017. Mask r-CNN. Proceedings of the IEEE International Conference on Computer Vision . p. 2961–2969.
  • He P, Cheng Y, Qi M, Cao Z, Zhang H, Ma S, Yao S, Wang Q. 2022. Super-resolution of digital elevation model with local implicit function representation. 2022 International Conference on Machine Learning and Intelligent Systems Engineering (MLISE). IEEE . p. 111–116 doi: 10.1109/MLISE57402.2022.00030.
  • Heung B, Ho HC, Zhang J, Knudby A, Bulmer CE, Schmidt MG. 2016. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma. 265:62–77. doi: 10.1016/j.geoderma.2015.11.014.
  • Hiller JK, Smith M. 2008. Residual relief separation: digital elevation model enhancement for geomorphological mapping. Earth Surf Processes Landforms. 33(14):2266–2276. doi: 10.1002/esp.1659.
  • Hu X, Yuan Y. 2016. Deep-learning-based classification for DTM extraction from ALS point cloud. Remote Sens. 8(9):730. doi: 10.3390/rs8090730.
  • Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z, Song Y, Guadarrama S. 2017. Speed/accuracy trade-offs for modern convolutional object detectors. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 7310–7311.
  • Hui J, Du M, Ye X, Qin Q, Sui J. 2019. Effective building extraction from high-resolution remote sensing images with multitask driven deep neural network. IEEE Geosci Remote Sens Lett. 16(5):786–790. doi: 10.1109/LGRS.2018.2880986.
  • Iizuka S, Simo-Serra E, Ishikawa H. 2017. Globally and locally consistent image completion. ACM Trans Graph. 36(4):1–14. doi: 10.1145/3072959.3073659.
  • Jenny B. 2001. An interactive approach to analytical relief shading. Cartogr: Int J Geogr Inf Geovisualization. 38(1–2):67–75. doi: 10.3138/F722-0825-3142-HW05.
  • Jenny B, Heitzler M, Singh D, Farmakis-Serebryakova M, Liu JC, Hurni L. 2021. Cartographic relief shading with neural networks. IEEE Trans Vis Comput Graph. 27(2):1225–1235. doi: 10.1109/TVCG.2020.3030456.
  • Jhaldiyal A, Chaudhary N. 2023. Semantic segmentation of 3d lidar data using deep learning: a review of projection-based methods. Appl Intell. 53(6):6844–6855. doi: 10.1007/s10489-022-03930-5.
  • Jia Y, Wan G, Liu L, Wang J, Wu Y, Xue N, Wang Y, Yang R. 2021. Split-attention networks with self-calibrated convolution for moon impact crater detection from multi-source data. Remote Sens. 13(16):3193. doi: 10.3390/rs13163193.
  • Karkee M, Steward BL, Aziz SA. 2008. Improving quality of public domain digital elevation models through data fusion. Biosyst Eng. 101(3):293–305. doi: 10.1016/j.biosystemseng.2008.09.010.
  • Kattenborn T, Leitloff J, Schiefer F, Hinz S. 2021. Review on convolutional neural networks (CNN) in vegetation remote sensing. ISPRS J Photogramm Remote Sens. 173:24–49. doi: 10.1016/j.isprsjprs.2020.12.010.
  • Kemker R, Salvaggio C, Kanan C. 2018. Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning. ISPRS J Photogramm Remote Sens. 145:60–77. doi: 10.1016/j.isprsjprs.2018.04.014.
  • Kitchenham BA, Charters S. 2007. Guidelines for performing systematic literature reviews in software engineering,
  • Krizhevsky A, Sutskever I, Hinton GE. 2017. Imagenet classification with deep convolutional neural networks. Commun ACM. 60(6):84–90. doi: 10.1145/3065386.
  • LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature. 521(7553):436–444. doi: 10.1038/nature14539.
  • Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z. 2017. Photo-realistic single image super-resolution using a generative adversarial network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 4681–4690.
  • Li J, Heap AD. 2011. A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol Inf. 6(3-4):228–241. doi: 10.1016/j.ecoinf.2010.12.003.
  • Li S, Xiong L, Tang G, Strobl J. 2020. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology. 354:107045. doi: 10.1016/j.geomorph.2020.107045.
  • Li S, Hu G, Cheng X, Xiong L, Tang G, Strobl J. 2022a. Integrating topographic knowledge into deep learning for the void-filling of digital elevation models. Remote Sens Environ. 269:112818. doi: 10.1016/j.rse.2021.112818.
  • Li S, Yin G, Ma J, Wen B, Zhou Z. 2022b. Generation method for shaded relief based on conditional generative adversarial nets. ISPRS Int J Geo-Inf. 11(7):374. doi: 10.3390/ijgi11070374.
  • Li W, Hsu C. 2020. Automated terrain feature identification from remote sensing imagery: a deep learning approach. Int J Geogr Inf Sci. 34(4):637–660. doi: 10.1080/13658816.2018.1542697.
  • Li W, Zhou B, Hsu C, Li Y, Ren F. 2017. Recognizing terrain features on terrestrial surface using a deep learning model: an example with crater detection. Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery . p. 33–36.
  • Li X, Cheng X, Chen W, Chen G, Liu S. 2015. Identification of forested landslides using lidar data, object-based image analysis, and machine learning algorithms. Remote Sens. 7(8):9705–9726. doi: 10.3390/rs70809705.
  • Li Y, Wu B, Ge X. 2019. Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density. ISPRS J Photogramm Remote Sens. 153:151–165. doi: 10.1016/j.isprsjprs.2019.05.007.
  • Lin P, Pan M, Wood EF, Yamazaki D, Allen GH. 2021. A new vector-based global river network dataset accounting for variable drainage density. Sci Data. 8(1):28. doi: 10.1038/s41597-021-00819-9.
  • Lin T, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature pyramid networks for object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 2117–2125.
  • Lin X, Zhu Z, Yu X, Ji X, Luo T, Xi X, Zhu M, Liang Y. 2022. Lunar crater detection on digital elevation model: a complete workflow using deep learning and its application. Remote Sens. 14(3):621. doi: 10.3390/rs14030621.
  • Ling F, Zhang QW, Wang C. 2007. Filling voids of SRTM with Landsat sensor imagery in rugged terrain. Int J Remote Sens. 28(2):465–471. doi: 10.1080/01431160601075509.
  • Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C, Berg AC. 2016. Ssd: single shot multibox detector. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 . Springer . p. 21–37
  • Liu Y, Zhang Z, Zhong R, Chen D, Ke Y, Peethambaran J, Chen C, Sun L. 2018. Multilevel building detection framework in remote sensing images based on convolutional neural networks. IEEE J Sel Top Appl Earth Obs Remote Sens. 11(10):3688–3700. doi: 10.1109/JSTARS.2018.2866284.
  • Llamas J, M. Lerones P, Medina R, Zalama E, Gómez-García-Bermejo J. 2017. Classification of architectural heritage images using deep learning techniques. Appl Sci. 7(10):992. doi: 10.3390/app7100992.
  • López J, Torres D, Santos S, Atzberger C. 2020. Spectral imagery tensor decomposition for semantic segmentation of remote sensing data through fully convolutional networks. Remote Sens. 12(3):517. doi: 10.3390/rs12030517.
  • Ma L, Liu Y, Zhang X, Ye Y, Yin G, Johnson BA. 2019. Deep learning in remote sensing applications: a meta-analysis and review. ISPRS J Photogramm Remote Sens. 152:166–177. doi: 10.1016/j.isprsjprs.2019.04.015.
  • Ma X, Li H, Chen Z. 2023. Feature enhanced deep learning network for digital elevation model super-resolution. IEEE J Sel Top Appl Earth Obs Remote Sens. 16:5670–5685. doi: 10.1109/JSTARS.2023.3288296.
  • Macher H, Landes T, Grussenmeyer P. 2017. From point clouds to building information models: 3d semi-automatic reconstruction of indoors of existing buildings. Appl Sci. 7(10):1030. doi: 10.3390/app7101030.
  • Marmanis D, Datcu M, Esch T, Stilla U. 2015. Deep learning earth observation classification using imagenet pretrained networks. IEEE Geosci Remote Sens Lett. 13(1):105–109. doi: 10.1109/LGRS.2015.2499239.
  • Maturana D, Scherer S. 2015. Voxnet: a 3d convolutional neural network for real-time object recognition. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). p . 922–928. IEEE, doi: 10.1109/IROS.2015.7353481.
  • Maxwell AE, Shobe CM. 2022. Land-surface parameters for spatial predictive mapping and modeling. Earth Sci Rev. 226:103944. doi: 10.1016/j.earscirev.2022.103944.
  • Mesa-Mingorance JL, Ariza-López FJ. 2020. Accuracy assessment of digital elevation models (DEMs): a critical review of practices of the past three decades. Remote Sens. 12(16):2630. doi: 10.3390/rs12162630.
  • Mi L, Chen Z. 2020. Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation. ISPRS J Photogramm Remote Sens. 159:140–152. doi: 10.1016/j.isprsjprs.2019.11.006.
  • Miao Z, Fu K, Sun H, Sun X, Yan M. 2018. Automatic water-body segmentation from high-resolution satellite images via deep networks. IEEE Geosci Remote Sens Lett. 15(4):602–606. doi: 10.1109/LGRS.2018.2794545.
  • Milan DJ, Heritage GL, Large AR, Fuller IC. 2011. Filtering spatial error from DEMs: implications for morphological change estimation. Geomorphology. 125(1):160–171. doi: 10.1016/j.geomorph.2010.09.012.
  • Minár J, Evans IS, Jenčo M. 2020. A comprehensive system of definitions of land surface (topographic) curvatures, with implications for their application in geoscience modelling and prediction. Earth Sci Rev. 211:103414. doi: 10.1016/j.earscirev.2020.103414.
  • Mirza M, Osindero S. 2014. Conditional generative adversarial nets. arXiv Preprint arXiv:1411.1784.
  • Miyoshi GT, Arruda MS, Osco LP, Marcato Junior J, Gonçalves DN, Imai NN, Tommaselli AMG, Honkavaara E, Gonçalves WN,. 2020. A novel deep learning method to identify single tree species in uav-based hyperspectral images. Remote Sens. 12(8):1294. doi: 10.3390/rs12081294.
  • Mullissa AG, Persello C, Stein A. 2019. Polsarnet: a deep fully convolutional network for polarimetric sar image classification. IEEE J Sel Top Appl Earth Obs Remote Sens. 12(12):5300–5309. doi: 10.1109/JSTARS.2019.2956650.
  • Murtiyoso A, Grussenmeyer P. 2019a. Point cloud segmentation and semantic annotation aided by gis data for heritage complexes. 8th International Workshop “3D Virtual Reconstruction and Visualization of Complex Architecture” (3D-ARCH) . Vol. 42. Bergamo, Italy: Copernicus Publications. p. 523–528. doi: 10.5194/isprs-archives-XLII-2-W9-523-2019.
  • Murtiyoso A, Grussenmeyer P. 2019b. Automatic heritage building point cloud segmentation and classification using geometrical rules. Int Arch Photogramm Remote Sens Spat Inf Sci. 42:821–827. doi: 10.5194/isprs-archives-XLII-2-W15-821-2019.
  • Na J, Ding H, Zhao W, Liu K, Tang G, Pfeifer N. 2021. Object-based large-scale terrain classification combined with segmentation optimization and terrain features: a case study in China. Trans GIS. 25(6):2939–2962. doi: 10.1111/tgis.12795.
  • Newman DR, Lindsay JB, Cockburn JMH. 2018. Evaluating metrics of local topographic position for multiscale geomorphometric analysis. Geomorphology. 312:40–50. doi: 10.1016/j.geomorph.2018.04.003.
  • Palafox LF, Hamilton CW, Scheidt SP, Alvarez AM. 2017. Automated detection of geological landforms on mars using convolutional neural networks. Comput Geosci. 101:48–56. doi: 10.1016/j.cageo.2016.12.015.
  • Passalacqua P, Do Trung T, Foufoula-Georgiou E, Sapiro G, Dietrich WE. 2010. A geometric framework for channel network extraction from lidar: nonlinear diffusion and geodesic paths. J Geophys Res: Earth Surf. 115(F1):1–18. doi: 10.1029/2009JF001254.
  • Pierdicca R, Paolanti M, Matrone F, Martini M, Morbidoni C, Malinverni ES, Frontoni E, Lingua AM. 2020. Point cloud semantic segmentation using a deep learning framework for cultural heritage. Remote Sens. 12(6):1005. doi: 10.3390/rs12061005.
  • Qi CR, Su H, Mo K, Guibas LJ. 2017a. Pointnet: deep learning on point sets for 3d classification and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 652–660.
  • Qi CR, Yi L, Su H, Guibas LJ. 2017b. Pointnet++: deep hierarchical feature learning on point sets in a metric space. Adv Neu Inf Process Syst. 30:1–10.
  • Qiu Z, Yue L, Liu X. 2019. Void filling of digital elevation models with a terrain texture learning model based on generative adversarial networks. Remote Sens. 11(23):2829. doi: 10.3390/rs11232829.
  • Ren S, He K, Girshick R, Sun J. 2015. Faster r-cnn: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems. 28:1–9.
  • Reuter HI, Nelson A, Jarvis A. 2007. An evaluation of void-filling interpolation methods for srtm data. International Journal of Geographical Information Science. 21(9):983–1008. doi: 10.1080/13658810601169899.
  • Ronneberger O, Fischer P, Brox T. 2015. U-net: convolutional networks for biomedical image segmentation. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5 – 9, 2015, Proceedings, Part III 18, Springer . p. 234–241.
  • Shaker A, Yan WY, LaRocque PE. 2019. Automatic land-water classification using multispectral airborne lidar data for near-shore and river environments. ISPRS J Photogramm Remote Sens. 152:94–108. doi: 10.1016/j.isprsjprs.2019.04.005.
  • Shi S, Wang X, Li H. 2019. PointrCNN: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . p. 770–779.
  • Shi W, Caballero J, Huszár F, Totz J, Aitken AP, Bishop R, Rueckert D, Wang Z. 2016. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 1874–1883.
  • Shin S, Paik K. 2017. An improved method for single flow direction calculation in grid digital elevation models. Hydrol Processes. 31(8):1650–1661. doi: 10.1002/hyp.11135.
  • Silburt A, Ali-Dib M, Zhu C, Jackson A, Valencia D, Kissin Y, Tamayo D, Menou K. 2019. Lunar crater identification via deep learning. Icarus. 317:27–38. doi: 10.1016/j.icarus.2018.06.022.
  • Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556.
  • Sofia G. 2020. Combining geomorphometry, feature extraction techniques and earth-surface processes research: the way forward. Geomorphology. 355:107055. doi: 10.1016/j.geomorph.2020.107055.
  • Song S, Xiao J. 2014. Sliding shapes for 3d object detection in depth images. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VI 13. Springer. p. 634–651
  • Song S, Xiao J. 2016. Deep sliding shapes for amodal 3D object detection in RGB-d images. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 808–816.
  • Spina S, Debattista K, Bugeja K, Chalmers A. 2011. Point cloud segmentation for cultural heritage sites. Proceedings of the 12th International Conference on Virtual Reality, Archaeology and Cultural Heritage . p. 41–48.
  • Stanislawski L, Brockmeyer T, Shavers E. 2018. Automated road breaching to enhance extraction of natural drainage networks from elevation models through deep learning. Int Arch Photogramm Remote Sens Spat Inf Sci. 42:597–601.
  • Stanislawski L, Brockmeyer T, Shavers E. 2019. Automated extraction of drainage channels and roads through deep learning. Abstr Int Cartogr Assoc. 1:350. doi: 10.5194/ica-abs-1-350-2019.
  • Stanislawski LV, Shavers EJ, Wang S, Jiang Z, Usery EL, Moak E, Duffy A, Schott J. 2021. Extensibility of u-net neural network model for hydrographic feature extraction and implications for hydrologic modeling. Remote Sens. 13(12):2368. doi: 10.3390/rs13122368.
  • Sun L, Guo H, Wang H, Zhang B, Feng H, Wu S, Siddique KH. 2023. Deep learning for check dam area extraction with optical images and digital elevation model: a case study in the hilly and gully regions of the Loess Plateau, China. Earth Surf Processes Landforms. 2023:1–16. doi: 10.1002/esp.5652.
  • Tamke M, Evers HL, Zwierzycki M, Wessel R, Ochmann S, Vock R, Klein R. 2016. An automated approach to the generation of structured building information models from unstructured 3d point cloud scans. Proceedings of IASS Annual Symposia . Vol. 17. International Association for Shell and Spatial Structures (IASS). p. 1–10
  • Tang P, Huber D, Akinci B, Lipman R, Lytle A. 2010. Automatic reconstruction of as-built building information models from laser-scanned point clouds: a review of related techniques. Autom Constr. 19(7):829–843. doi: 10.1016/j.autcon.2010.06.007.
  • Targ S, Almeida D, Lyman K. 2016. Resnet in resnet: generalizing residual architectures. arXiv Preprint arXiv:1603.08029.
  • Thomson C, Boehm J. 2015. Automatic geometry generation from point clouds for BIM. Remote Sens. 7(9):11753–11775. doi: 10.3390/rs70911753.
  • Tian Z, Shen C, Chen H, He T. 2019. Fcos: fully convolutional one-stage object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision . p. 9627–9636.
  • Torres RN, Fraternali P, Milani F, Frajberg D. 2020. Mountain summit detection with deep learning: evaluation and comparison with heuristic methods. Appl Geomat. 12:225–246. doi: 10.1007/s12518-019-00295-2.
  • Tsai RY, Huang TS. 1984. Multiframe image restoration and registration. Multiframe Image Restor Regist. 1:317–339.
  • Ureña-Cámara MA, Mozas-Calvache AT. 2023. Identification of highlighted cells in low-variance raster data application to digital elevation models. Algorithms. 16(6):302. doi: 10.3390/a16060302.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all you need. Adv Neu Inform Process Syst. 30:1–11.
  • Vaz DA, Sarmento PT, Barata MT, Fenton LK, Michaels TI. 2015. Object-based dune analysis: automated dune mapping and pattern characterization for ganges chasma and gale crater, mars. Geomorphology. 250:128–139. doi: 10.1016/j.geomorph.2015.08.021.
  • Verhagen P, Drăguţ L. 2012. Object-based landform delineation and classification from DEMs for archaeological predictive mapping. J Archaeolog Sci. 39(3):698–703. doi: 10.1016/j.jas.2011.11.001.
  • Wang D, Laffan SW, Liu Y, Wu L. 2010. Morphometric characterisation of landform from DEMs. Int J Geogr Inform Sci. 24(2):305–326. doi: 10.1080/13658810802467969.
  • Wang G, Wu M, Wei X, Song H. 2020a. Water identification from high-resolution remote sensing images based on multidimensional densely connected convolutional neural networks. Remote Sens. 12(5):795. doi: 10.3390/rs12050795.
  • Wang H, Jiang J, Zhang G. 2018a. Crateridnet: an end-to-end fully convolutional neural network for crater detection and identification in remotely sensed planetary images. Remote Sens. 10(7):1067. doi: 10.3390/rs10071067.
  • Wang S, Fan Z, Li Z, Zhang H, Wei C. 2020b. An effective lunar crater recognition algorithm based on convolutional neural network. Remote Sens. 12(17):2694. doi: 10.3390/rs12172694.
  • Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Loy CC. 2018b. Esrgan: enhanced super-resolution generative adversarial networks. Proceedings of the European Conference on Computer Vision (ECCV) Workshops . p. 0–0.
  • Woodrow K, Lindsay JB, Berg AA. 2016. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction. J Hydrol. 540:1022–1029. doi: 10.1016/j.jhydrol.2016.07.018.
  • Wu D, Li R, Rekabdar B, Talbert C, Edidem M, Wang G. 2023. Classification of drainage crossings on high-resolution digital elevation models: a deep learning approach. GIScience Remote Sens. 60(1):2230706. doi: 10.1080/15481603.2023.2230706.
  • Wu Y, Wan G, Liu L, Wei Z, Wang S. 2021. Intelligent crater detection on planetary surface using convolutional neural network. 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Vol. 5 . IEEE . p. 1229–1234. doi: 10.1109/IAEAC50856.2021.9391002.
  • Xiong L, Tang G, Li F, Yuan B, Lu Z. 2014. Modeling the evolution of loess-covered landforms in the loess plateau of china using a DEM of underground bedrock surface. Geomorphology. 209:18–26. doi: 10.1016/j.geomorph.2013.12.009.
  • Xiong L, Li S, Tang G, Strobl J. 2022. Geomorphometry and terrain analysis: data, methods, platforms and applications. Earth Sci Rev. 233:104191. doi: 10.1016/j.earscirev.2022.104191.
  • Xu Z, Wang X, Chen Z, Xiong D, Ding M, Hou W. 2015. Nonlocal similarity based DEM super resolution. ISPRS J Photogramm Remote Sens. 110:48–54. doi: 10.1016/j.isprsjprs.2015.10.009.
  • Xu Z, Guan K, Casler N, Peng B, Wang S. 2018. A 3D convolutional neural network method for land cover classification using LIDAR and multi-temporal Landsat imagery. ISPRS J Photogramm Remote Sens. 144:423–434. doi: 10.1016/j.isprsjprs.2018.08.005.
  • Xu Z, Wang S, Stanislawski LV, Jiang Z, Jaroenchai N, Sainju AM, Shavers E, Usery EL, Chen L, Li Z. 2021. An attention u-net model for detection of fine-scale hydrologic streamlines. Environ Modell Softw. 140:104992. doi: 10.1016/j.envsoft.2021.104992.
  • Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O’Loughlin F, Neal JC, Sampson CC, Kanae S, Bates PD. 2017. A high-accuracy map of global terrain elevations. Geophys Res Lett. 44(11):5844–5853. doi: 10.1002/2017GL072874.
  • Yamazaki D, Ikeshima D, Sosa J, Bates PD, Allen GH, Pavelsky TM. 2019. Merit hydro: a high-resolution global hydrography map based on latest topography dataset. Water Resour Res. 55(6):5053–5073. doi: 10.1029/2019WR024873.
  • Yan Y, Yan H, Guo J, Dai H. 2020. Classification and segmentation of mining area objects in large-scale spares LIDAR point cloud using a novel rotated density network. ISPRS Int J Geo-Inf. 9(3):182. doi: 10.3390/ijgi9030182.
  • Yang J, Xu J, Lv Y, Zhou C, Zhu Y, Cheng W. 2023. Deep learning-based automated terrain classification using high-resolution DEM data. Int J Appl Earth Obs Geoinf. 118:103249 doi: 10.1016/j.jag.2023.103249.
  • Yao X, Han J, Cheng G, Qian X, Guo L. 2016. Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans Geosci Remote Sens. 54(6):3660–3671. doi: 10.1109/TGRS.2016.2523563.
  • Yuan Q, Shen H, Li T, Li Z, Li S, Jiang Y, Xu H, Tan W, Yang Q, Wang J. 2020. Deep learning in environmental remote sensing: achievements and challenges. Remote Sens Environ. 241:111716. doi: 10.1016/j.rse.2020.111716.
  • Zeiler MD, Fergus R. 2014. Visualizing and understanding convolutional networks. Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6 – 12, 2014, Proceedings, Part I 13. Springer . p. 818–833.
  • Zhang C, Shi S, Ge Y, Liu H, Cui W. 2020. DEM void filling based on context attention generation model. ISPRS Int J Geo-Inf. 9(12):734. doi: 10.3390/ijgi9120734.
  • Zhang K, Hao M, Wang J, de Silva CW, Fu C. 2019. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features. arXiv Preprint arXiv:1904.10014.
  • Zhang R, Li G, Li M, Wang L. 2018. Fusion of images and point clouds for the semantic segmentation of large-scale 3d scenes based on deep learning. ISPRS J Photogramm Remote Sens. 143:85–96. doi: 10.1016/j.isprsjprs.2018.04.022.
  • Zhang R, Bian S, Li H. 2021. RSPCN: super-resolution of digital elevation model based on recursive sub-pixel convolutional neural networks. ISPRS Int J Geo-Inf. 10(8):501. doi: 10.3390/ijgi10080501.
  • Zhang Y, Yu W. 2022. Comparison of DEM super-resolution methods based on interpolation and neural networks. Sensors. 22(3):745. doi: 10.3390/s22030745.
  • Zhang Y, Yu W, Zhu D. 2022. Terrain feature-aware deep learning network for digital elevation model superresolution. ISPRS J Photogramm Remote Sens. 189:143–162. doi: 10.1016/j.isprsjprs.2022.04.028.
  • Zhou A, Chen Y, Wilson JP, Su H, Xiong Z, Cheng Q. 2021. An enhanced double-filter deep residual neural network for generating super resolution DEMs. Remote Sens. 13(16):3089. doi: 10.3390/rs13163089.
  • Zhou G, Song B, Liang P, Xu J, Yue T. 2022. Voids filling of DEM with multiattention generative adversarial network model. Remote Sens. 14(5):1206. doi: 10.3390/rs14051206.
  • Zhou Y, Tuzel O. 2018. Voxelnet: end-to-end learning for point cloud based 3d object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . p. 4490–4499.
  • Zhu D, Cheng X, Zhang F, Yao X, Gao Y, Liu Y. 2020. Spatial interpolation using conditional generative adversarial neural networks. Int J Geogr Inform Sci. 34(4):735–758. doi: 10.1080/13658816.2019.1599122.