816
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Analyzing the correlation of forest and wetland with land surface temperature by using geospatial technology: a case of Yayo district, Southwestern Ethiopia

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Article: 2256300 | Received 29 May 2023, Accepted 01 Sep 2023, Published online: 11 Sep 2023

References

  • Abera W, Tamene L, Kassawmar T, Mulatu K, Kassa H, Verchot L, Quintero M. 2021. Impacts of land use and land cover dynamics on ecosystem services in the Yayo coffee forest biosphere reserve, southwestern Ethiopia. Ecosyst Serv. 50:101338. doi: 10.1016/j.ecoser.2021.101338.
  • Bala R, Prasad R, Yadav VP, Sharma J. 2018. A comparative study of land surface temperature with different indices on heterogeneous land cover using Landsat 8 data. Int Arch Photogramm Remote Sens Spatial Inf Sci. XLII-5:389–394. doi: 10.5194/isprs-archives-XLII-5-389-2018.
  • Balew A, Korme T. 2020. Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. Egypt J Remote Sens Space Sci. 23(3):371–386. doi: 10.1016/j.ejrs.2020.02.001.
  • Burgund D, Nikolovski S, Galic D, Maravic N. 2023. Pearson correlation in determination of quality of current transformers. Sensors. 23(5):2704. doi: 10.3390/s23052704.
  • Carlson TN, Ripley DA. 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens Environ. 62(3):241–252. doi: 10.1016/S0034-4257(97)00104-1.
  • Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ. 113(5):893–903. doi: 10.1016/j.rse.2009.01.007.
  • Chibuike EM, Ibukun AO, Kunda JJ, Abbas A. 2018. Assessment of Green Parks cooling effects on Abuja urban microclimate using geospatial techniques. Remote Sens Appl Soc Environ. 11:11–21. doi: 10.1016/j.rsase.2018.04.006.
  • Elmore AJ, Mustard JF, Manning SJ, Lobell DB. 2000. Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens Environ. 73(1):87–102. doi: 10.1016/S0034-4257(00)00100-0.
  • Erwin KL. 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecol Manage. 17(1):71–84. doi: 10.1007/s11273-008-9119-1.
  • Fang Y-K, Wang H-C, Fang P-H, Liang B, Zheng K, Sun Q, Li X-Q, Zeng R, Wang A-J. 2023. Life cycle assessment of integrated bioelectrochemical-constructed wetland system: environmental sustainability and economic feasibility evaluation. Resour Conserv Recycl. 189:106740. doi: 10.1016/j.resconrec.2022.106740.
  • Gebre T, Gebremedhin B. 2019. The mutual benefits of promoting rural-urban interdependence through linked ecosystem services. Global Ecol Conserv. 20:e00707. doi: 10.1016/j.gecco.2019.e00707.
  • Gemeda DO, Korecha D, Garedew W. 2021. Evidences of climate change presences in the wettest parts of southwest Ethiopia. Heliyon. 7(9):e08009. doi: 10.1016/j.heliyon.2021.e08009.
  • Getahun D, Keno ET. 2019. Attitudes and perceptions of the local community towards Yayo coffee forest biosphere reserve, Ilu Abba Bora Zone of Oromia National Regional State. Ethiop J Sci Sustain Develop. 6(1):79–90.
  • He M-Y, Dong J-B, Jin Z, Liu C-Y, Xiao J, Zhang F, Sun H, Zhao Z-Q, Gou L-F, Liu W-G, et al. 2021. Pedogenic processes in loess-paleosol sediments: clues from Li isotopes of leachate in Luochuan loess. Geochim Cosmochim Acta. 299:151–162. doi: 10.1016/j.gca.2021.02.021.
  • Huang S, Lyu Y, Sha H, Xiu L. 2021. Seismic performance assessment of unsaturated soil slope in different groundwater levels. Landslides. 18(8):2813–2833. doi: 10.1007/s10346-021-01674-w.
  • Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Hunt ER. 2004. Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ. 92(4):475–482. doi: 10.1016/j.rse.2003.10.021.
  • Junk WJ, An S, Finlayson CM, Gopal B, Květ J, Mitchell SA, Mitsch WJ, Robarts RD. 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci. 75(1):151–167. doi: 10.1007/s00027-012-0278-z.
  • Kattel GR. 2022. Climate warming in the Himalayas threatens biodiversity, ecosystem functioning and ecosystem services in the 21st century: is there a better solution? Biodivers Conserv. 31(8–9):2017–2044. doi: 10.1007/s10531-022-02417-6.
  • Kayumba PM, Chen Y, Mind’je R, Mindje M, Li X, Maniraho AP, Umugwaneza A, Uwamahoro S. 2021. Geospatial land surface-based thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China. Landscape Ecol. 36(6):1699–1723. doi: 10.1007/s10980-021-01240-8.
  • Kumari, B, Tayyab, M, Mallick, J, Khan, MF, Rahman, A, Shahfahad, S. 2018. Satellite-driven land surface temperature (LST) using Landsat 5, 7 (TM/ETM + SLC) and Landsat 8 (OLI/TIRS) data and its association with built-up and green cover over urban Delhi, India. Remote Sens Earth Syst Sci. 1(3–4):63–78. doi: 10.1007/s41976-018-0004-2.
  • Li J, Charles LS, Yang Z, Du G, Fu S. 2022. Differential mechanisms drive species loss under artificial shade and fertilization in the alpine meadow of the Tibetan Plateau. Front Plant Sci. 13:832473. doi: 10.3389/fpls.2022.832473.
  • Li W, Shi Y, Zhu D, Wang W, Liu H, Li J, Shi N, Ma L, Fu S. 2021. Fine root biomass and morphology in a temperate forest are influenced more by the nitrogen treatment approach than the rate. Ecol Indic. 130:108031. doi: 10.1016/j.ecolind.2021.108031.
  • Liu S, Hou J, Suo C, Chen J, Liu X, Fu R, Wu F. 2022. Molecular-level composition of dissolved organic matter in distinct trophic states in Chinese lakes: implications for eutrophic lake management and the global carbon cycle. Water Res. 217:118438. doi: 10.1016/j.watres.2022.118438.
  • Liu J, Liu S, Tang X, Ding Z, Ma M, Yu P. 2022. The response of land surface temperature changes to the vegetation dynamics in the Yangtze River Basin. Remote Sensing. 14(20):5093. doi: 10.3390/rs1420509.
  • Liu Y, Zhang K, Li Z, Liu Z, Wang J, Huang P. 2020. A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. Journal of Hydrology (Amsterdam). 590:125440. doi: 10.1016/j.jhydrol.2020.125440.
  • Li J, Wang Y, Nguyen X, Zhuang X, Li J, Querol X, Li B, Moreno N, Hoang V, Cordoba P, et al. 2022. First insights into mineralogy, geochemistry, and isotopic signatures of the Upper Triassic high‑sulfur coals from the Thai Nguyen Coal field, NE Vietnam. Int J Coal Geol. 261:104097. doi: 10.1016/j.coal.2022.104097.
  • Li J, Wang Z, Wu X, Xu C, Guo S, … Chen X. 2020. Toward monitoring short-term droughts using a novel daily scale, standardized antecedent precipitation evapotranspiration index. Journal of Hydrometeorology. 21(5):891–908. doi: 10.1175/JHM-D-19-0298.1.
  • Mensah C, Atayi J, Kabo-Bah AT, Švik M, Acheampong D, Kyere-Boateng R, Prempeh NA, Marek MV. 2020. Impact of urban land cover change on the garden city status and land surface temperature of Kumasi. Cogent EnvironSci. 6(1):1787738. doi: 10.1080/23311843.2020.1787738.
  • Merga BB, Moisa MB, Negash DA, Ahmed Z, Gemeda DO. 2022. Land surface temperature variation in response to land-use and land-cover dynamics: a case of Didessa River sub-basin in Western Ethiopia. Earth Syst Environ. 6(4):803–815. doi: 10.1007/s41748-022-00303-3.
  • Moat J, Williams J, Baena S, Wilkinson T, Gole TW, Challa ZK, Demissew S, Davis AP. 2017. Resilience potential of the Ethiopian coffee sector under climate change. Nat Plants. 3(7):17081. doi: 10.1038/nplants.2017.81.
  • Moisa MB, Dejene IN, Gemeda DO. 2022. Geospatial technology–based analysis of land use land cover dynamics and its effects on land surface temperature in Guder River sub-basin, Abay Basin, Ethiopia. Appl Geomat. 14(3):451–463. doi: 10.1007/s12518-022-00445-z.
  • Moisa MB, Dejene IN, Hinkosa LB, Gemeda DO. 2022. Land use/land cover change analysis using geospatial techniques: a case of Geba watershed, western Ethiopia. SN Appl Sci. 4(6):1–10. doi: 10.1007/s42452-022-05069-x.
  • Moisa MB, Dejene IN, Merga BB, Gemeda DO. 2022a. Soil loss estimation and prioritization using geographic information systems and the RUSLE model: a case study of the Anger River sub-basin, Western Ethiopia. J Water Climat Change. 13(3):1170–1184. doi: 10.2166/wcc.2022.433.
  • Moisa MB, Dejene IN, Merga BB, Gemeda DO. 2022b. Impacts of land use/land cover dynamics on land surface temperature using geospatial techniques in Anger River Sub-basin, Western Ethiopia. Environ Earth Sci. 81(3):1–14. doi: 10.1007/s12665-022-10221-2.
  • Moisa MB, Gemeda DO. 2021. Analysis of urban expansion and land use/land cover changes using geospatial techniques: a case of Addis Ababa City, Ethiopia. Appl Geomat. 13(4):853–861. doi: 10.1007/s12518-021-00397-w.
  • Moisa MB, Merga BB, Gemeda DO. 2022. Multiple indices-based assessment of agricultural drought: a case study in Gilgel Gibe Sub-basin, Southern Ethiopia. Theor Appl Climatol. 148(1–2):455–464. doi: 10.1007/s00704-022-03962-4.
  • Moisa MB, Negash DA, Merga BB, Gemeda DO. 2021. Impact of land-use and land-cover change on soil erosion using the RUSLE model and the geographic information system: a case of Temeji watershed, Western Ethiopia. J Water Climate Change. 12(7):3404–3420. doi: 10.2166/wcc.2021.131.
  • Moisa MB, Tiye FS, Dejene IN, Gemeda DO. 2022. Land suitability analysis for maize production using geospatial technologies in the Didessa watershed, Ethiopia. Artif Intell Agric. 6:34–46. doi: 10.1016/j.aiia.2022.02.001.
  • Muro J, Strauch A, Heinemann S, Steinbach S, Thonfeld F, Waske B, Diekkrüger B. 2018. Land surface temperature trends as indicator of land use changes in wetlands. Int J Appl Earth Obs Geoinf. 70:62–71. doi: 10.1016/j.jag.2018.02.002.
  • Negash DA, Moisa MB, Merga BB, Sedeta F, Gemeda DO. 2021. Soil erosion risk assessment for prioritization of sub-watershed: the case of Chogo Watershed, Horo Guduru Wollega, Ethiopia. Environ Earth Sci. 80(17):1–11. doi: 10.1007/s12665-021-09901-2.
  • Neinavaz E, Skidmore AK, Darvishzadeh R. 2020. Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int J Appl Earth Obs Geoinf. 85:101984. doi: 10.1016/j.jag.2019.101984.
  • Oostdijk S. 2021. Deforestation and forest fragmentation in Southwestern Ethiopia from 1973 to 2019 [master’s thesis]. Utrecht, Netherlands: Utrecht University.
  • Pei Y, Qiu H, Zhu Y, Wang J, Yang D, Tang B, Wang F, Cao M. 2023. Elevation dependence of landslide activity induced by climate change in the eastern Pamirs. Landslides. 20(6):1115–1133. doi: 10.1007/s10346-023-02030-w.
  • Seddon N, Chausson A, Berry P, Girardin CA, Smith A, Turner B. 2020. Understanding the value and limits of nature-based solutions to climate change and other global challenges. Philos Trans R Soc Lond B Biol Sci. 375(1794):20190120. doi: 10.1098/rstb.2019.0120.
  • Singh P, Kikon N, Verma P. 2017. Impact of land use change and urbanization on urban heat island in Lucknow city, Central India. A remote sensing based estimate. Sustain Cities Soc. 32:100–114. doi: 10.1016/j.scs.2017.02.018.
  • Siqi J, Yuhong W. 2020. Effects of land use and land cover pattern on urban temperature variations: a case study in Hong Kong. Urban Clim. 34:100693. doi: 10.1016/j.uclim.2020.100693.
  • Srivastava PK, Majumdar TJ, Bhattacharya AK. 2010. Study of land surface temperature and spectral emissivity using multi-sensor satellite data. J Earth Syst Sci. 119(1):67–74. doi: 10.1007/s12040-010-0002-0.
  • Šverko Z, Vrankić M, Vlahinić S, Rogelj P. 2022. Complex Pearson correlation coefficient for EEG connectivity analysis. Sensors. 22(4):1477. doi: 10.3390/s22041477.
  • Tadese S, Soromessa T, Bekele T, Meles B. 2021. Biosphere reserves in the Southwest of Ethiopia. Adv Agric. 2021:1–7. doi: 10.1155/2021/1585149.
  • Tafesse B, Suryabhagavan KV. 2019. Systematic modeling of impacts of land-use and land-cover changes on land surface temperature in Adama Zuria District, Ethiopia. Model Earth Syst Environ. 5(3):805–817. doi: 10.1007/s40808-018-0567-1.
  • Van Khuc Q, Tran BQ, Meyfroidt P, Paschke MW. 2018. Drivers of deforestation and forest degradation in Vietnam: an exploratory analysis at the national level. Forest Pol Econ. 90:128–141. doi: 10.1016/j.forpol.2018.02.004.
  • Wang F, Harindintwali JD, Wei K, Shan Y, Mi Z, Costello MJ, Grunwald S, Feng Z, Wang F, Guo Y, et al. 2023. Climate change: strategies for mitigation and adaptation. TIG. 1(1):100015–100011. doi: 10.59717/j.xinn-geo.2023.100015.
  • Wang H, Liu Y, Yang Y, Fang Y, Luo S, Cheng H, Wang A. 2022. Element sulfur-based autotrophic de nitrification constructed wetland as an efficient approach for nitrogen removal from low C/N wastewater. Water Res. 226:119258. doi: 10.1016/j.watres.2022.119258.
  • Wang X, Wang T, Xu J, Shen Z, Yang Y, Chen A, Wang S, Liang E, Piao S. 2022. Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion. Nat Ecol Evol. 6(7):890–899. doi: 10.1038/s41559-022-01774-3.
  • Wolteji BN, Bedhadha ST, Gebre SL, Alemayehu E, Gemeda DO. 2022. Multiple indices based agricultural drought assessment in the rift valley region of Ethiopia. Environmental Challenges. 7:100488. doi: 10.1016/j.envc.2022.100488.
  • Xu Z, Wang Y, Jiang S, Fang C, Liu L, Wu K, Luo Q, Li X, Chen Y. 2022. Impact of input, preservation and dilution on organic matter enrichment in lacustrine rift basin: a case study of lacustrine shale in Dehui Depression of Songliao Basin, NE China. Mar Pet Geol. 135:105386. doi: 10.1016/j.marpetgeo.2021.105386.
  • Yan Y, Jarvie S, Liu Q, Zhang Q. 2022. Effects of fragmentation on grassland plant diversity depend on the habitat specialization of species. Biol Conserv. 275:109773. doi: 10.1016/j.biocon.2022.109773.
  • Yang Y, Dou Y, Wang B, Xue Z, Wang Y, An S, Chang SX. 2022. Deciphering factors driving soil microbial life-history strategies in restored grasslands. iMeta. 2(1). doi: 10.1002/imt2.66.
  • Yang Y, Li T, Pokharel P, Liu L, Qiao J, Wang Y, An S, Chang SX. 2022. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate. Soil Biol Biochem. 174:108814. doi: 10.1016/j.soilbio.
  • Yang J, Sun J, Ge Q, Li X. 2017. Assessing the impacts of urbanization –associated green space on urban land surface temperature: a case study of Dalian, China. Urban Forest Urban Green. 22:1–10. doi: 10.1016/j.ufug.2017.01.002.
  • Yang M, Zhao A, Ke H, Chen H. 2023. Geo-environmental factors & influence on the prevalence and distribution of dental fluorosis: evidence from Dali County, Northwest China. Sustainability. 15(3):1871. doi: 10.3390/su15031871.
  • Yang M, Zhao W, Zhan Q, Xiong D. 2021. Spatiotemporal patterns of land surface temperature change in the Tibetan plateau based on MODIS/Terra daily product from 2000 to 2018. IEEE J Sel Top Appl Earth Observ Remote Sens. 14:6501–6514. doi: 10.1109/JSTARS.2021.3089851.
  • Yue W, Xu J, Tan W, Xu L. 2007. The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7ETM + data. Int J Remote Sens. 28(15):3205–3226. doi: 10.1080/01431160500306906.
  • Zhang S, Bai X, Zhao C, Tan Q, Luo G, Wang J, Li Q, Wu L, Chen F, Li C, et al. 2021. Global CO2 consumption by silicate rock chemical weathering: its past and future. Earth’s Future. 9(5):e1938E–e2020E. doi: 10.1029/2020EF001938.
  • Zhang B, Zhang M, Hong D. 2021. Land surface temperature retrieval from Landsat 8 OLI/TIRS images based on back-propagation neural network. Indoor Built Environ. 30(1):22–38. doi: 10.1177/1420326X19882079.
  • Zhao W, Yang M, Chang R, Zhan Q, Li ZL. 2021. Surface warming trend analysis based on MODIS/Terra land surface temperature product at Gongga Mountain in the southeastern Tibetan Plateau. JGR Atmos. 126(22):e2020JD034205. doi: 10.1029/2020JD034205.
  • Zhou S, Liu D, Zhu M, Tang W, Chi Q, Ye S, Xu S, Cui Y. 2022. Temporal and spatial variation of land surface temperature and its driving factors in Zhengzhou City in China from 2005 to 2020. Remote Sens. 14(17):4281. doi: 10.3390/rs14174281.
  • Zhou X, Wang YC. 2011. Dynamics of land surface temperature in response to LULC. Geograph Res. 49(1):23–36. doi: 10.1111/j.1745-5871.2010.00686.x.
  • Zhou J, Wang L, Zhong X, Yao T, Qi J, Wang Y, Xue Y. 2022. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau. Sci Bull. 67(5):474–478. doi: 10.1016/j.scib.2021.11.010.
  • Zhu G, Liu Y, Wang L, Sang L, Zhao K, Zhang Z, Lin X, Qiu D. 2023. The isotopes of precipitation have climate change signal in arid Central Asia. Global Planet Change. 225:104103. doi: 10.1016/j.gloplacha.2023.104103.