422
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Landslide susceptibility mapping with feature fusion transformer and machine learning classifiers incorporating displacement velocity along Karakoram highway

, &
Article: 2292752 | Received 16 Oct 2023, Accepted 05 Dec 2023, Published online: 12 Dec 2023

References

  • Abid M, Ashfaq A. 2015. CPEC: challenges and opportunities for Pakistan. Pak Vision. 16(2):142–169.
  • Ali S, Biermanns P, Haider R, Reicherter K. 2019. Landslide susceptibility mapping by using a geographic information system (GIS) along the China–Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat Hazards Earth Syst Sci. 19(5):999–1022. doi: 10.5194/nhess-19-999-2019.
  • Amatriain X. 2023. Transformer models: an introduction and catalog. arXiv preprint arXiv: 07730.
  • Ba JL, Kiros JR, Hinton GE. 2016. Layer normalization. arXiv preprint arXiv: 06450.
  • Beladam O, Balz T, Mohamadi B, Abdalhak M. 2019. Using PS-INSAR with sentinel-1 images for deformation monitoring in northeast Algeria. Geosciences. 9(7):315. doi: 10.3390/geosciences9070315.
  • Brabb EE. 1985. Innovative approaches to landslide hazard and risk mapping. International Landslide Symposium Proceedings, Toronto, Canada. p. 17–22.
  • Breiman L. 2001. Random forests. Mach Learn. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Bui DT, Tsangaratos P, Nguyen VT, Van Liem N, Trinh PT. 2020. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. Catena. 188:104426. doi: 10.1016/j.catena.2019.104426.
  • Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p. 785–794.
  • Chen Y, Ming D, Ling X, Lv X, Zhou C. 2021. Landslide susceptibility mapping using feature fusion-based CPCNN-ML in Lantau Island, Hong Kong. IEEE J Sel Top Appl Earth Observat Remote Sens. 14:3625–3639. doi: 10.1109/JSTARS.2021.3066378.
  • Cruden DM, Varnes DJ. 1996. Landslides: investigation and mitigation. Chapter 3-Landslide Types Processes. Transport Res Board Special Rep. 247:030906208X.
  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M, Pepe G, Raso E, Calcaterra D. 2020. Machine learning ensemble modelling as a tool to improve landslide susceptibility mapping reliability. Landslides. 17(8):1897–1914. doi: 10.1007/s10346-020-01392-9.
  • Dorogush AV, Ershov V, Gulin A. 2018. CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv: 11363.
  • Dou J, Yunus AP, Tien Bui D, Sahana M, Chen CW, Zhu Z, Wang W, Pham BT. 2019. Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the LiDAR DEM. Remote Sens. 11(6):638. doi: 10.3390/rs11060638.
  • El Jazouli A, Barakat A, Khellouk R. 2019. GIS-multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenviron Disasters. 6(1):1–12. doi: 10.1186/s40677-019-0119-7.
  • Fang Z, Wang Y, Peng L, Hong H. 2020. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Comput Geosci. 139:104470. doi: 10.1016/j.cageo.2020.104470.
  • Fayaz A, Latif M, Khan K. 1985. Landslide evaluation and stabilization between Gilgit and Thakot along the Karakoram Highway. Geological Survey of Pakistan, Islamabad, Pakistan.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Stat. 29(5):1189–1232.
  • Gaidzik K, Ramírez-Herrera MT. 2021. The importance of input data on landslide susceptibility mapping. Sci Rep. 11(1):19334. doi: 10.1038/s41598-021-98830-y.
  • Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. Mach Learn. 63(1):3–42. doi: 10.1007/s10994-006-6226-1.
  • Gupta SK, Shukla DP. 2023. Handling data imbalance in machine learning based landslide susceptibility mapping: a case study of Mandakini River Basin, North-Western Himalayas. Landslides. 20(5):933–949. doi: 10.1007/s10346-022-01998-1.
  • Guzzetti F, Cardinali M, Reichenbach P. 1996. The influence of structural setting and lithology on landslide type and pattern. Environ Eng Geosci. II(4):531–555. doi: 10.2113/gseegeosci.II.4.531.
  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology. 31(1-4):181–216. doi: 10.1016/S0169-555X(99)00078-1.
  • Guzzetti F, Mondini AC, Cardinali M, Fiorucci F, Santangelo M, Chang KT. 2012. Landslide inventory maps: new tools for an old problem. Earth-Sci Rev. 112(1–2):42–66. doi: 10.1016/j.earscirev.2012.02.001.
  • Hartmann J, Moosdorf N. 2012. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochem Geophys Geosyst. 13(12):1–37. doi: 10.1029/2012GC004370.
  • Henriques C, Zêzere JL, Marques F. 2015. The role of the lithological setting on the landslide pattern and distribution. Eng Geol. 189:17–31. doi: 10.1016/j.enggeo.2015.01.025.
  • Huang F, Cao Z, Guo J, Jiang SH, Li S, Guo Z. 2020. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. Catena. 191:104580. doi: 10.1016/j.catena.2020.104580.
  • Huang F, Xiong H, Yao C, Catani F, Zhou C, Huang J. 2023a. Uncertainties of landslide susceptibility prediction considering different landslide types. JRMGE. 15(11):2954–2972. doi: 10.1016/j.jrmge.2023.03.001.
  • Huang F, Yao C, Liu W, Li Y, Liu X. 2018. Landslide susceptibility assessment in the Nantian area of China: a comparison of frequency ratio model and support vector machine. Geomat Natl Hazards. 9(1):919–938. doi: 10.1080/19475705.2018.1482963.
  • Huang F, Zhang J, Zhou C, Wang Y, Huang J, Zhu L. 2020b. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides. 17(1):217–229. doi: 10.1007/s10346-019-01274-9.
  • Huang W, Ding M, Li Z, Yu J, Ge D, Liu Q, Yang J. 2023. Landslide susceptibility mapping and dynamic response along the Sichuan-Tibet transportation corridor using deep learning algorithms. Catena. 222:106866. doi: 10.1016/j.catena.2022.106866.
  • Huang Y, Zhao L. 2018. Review on landslide susceptibility mapping using support vector machines. Catena. 165:520–529. doi: 10.1016/j.catena.2018.03.003.
  • Hussain MA, Chen Z, Wang R, Shoaib M. 2021. PS-InSAR-based validated landslide susceptibility mapping along Karakorum Highway, Pakistan. Remote Sens. 13(20):4129. doi: 10.3390/rs13204129.
  • Hussain MA, Chen Z, Zheng Y, Shoaib M, Shah SU, Ali N, Afzal Z. 2022. Landslide susceptibility mapping using machine learning algorithm validated by persistent scatterer In-SAR technique. Sensors. 22(9):3119. doi: 10.3390/s22093119.
  • Hussain S, Pan B, Afzal Z, Ali M, Zhang X, Shi X, Ali M. 2023. Landslide detection and inventory updating using the time-series InSAR approach along the Karakoram Highway, Northern Pakistan. Sci Rep. 13(1):7485. doi: 10.1038/s41598-023-34030-0.
  • Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning. p. 448–456.
  • Javaid U. 2016. Assessing CPEC: potential threats and prospects. J Res Soc Pak. 53(2):254–269.
  • Ji S, Yu D, Shen C, Li W, Xu Q. 2020. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides. 17(6):1337–1352. doi: 10.1007/s10346-020-01353-2.
  • Jiang Z, Wang M, Liu K. 2023. Comparisons of convolutional neural network and other machine learning methods in landslide susceptibility assessment: a case study in Pingwu. Remote Sens. 15(3):798. doi: 10.3390/rs15030798.
  • Khalil U, Imtiaz I, Aslam B, Ullah I, Tariq A, Qin S. 2022. Comparative analysis of machine learning and multi-criteria decision making techniques for landslide susceptibility mapping of Muzaffarabad district. Front Environ Sci. 10:1–19. doi: 10.3389/fenvs.2022.1028373.
  • Khan K, Fayaz A, Hussain M, Latif M. 2003. Landslides problems and their mitigation along the Karakoram highway. Geological Survey of Pakistan: Islamabad, Pakistan.
  • Khan K, Fayaz A, Latif M, Wazir A. 1986. Rock and debris slides between Khunjrab pass and Gilgit along the Karakoram highway. Geological Survey of Pakistan, Islamabad, Pakistan.
  • Khan S, Liu G. 2019. The China–Pakistan economic corridor (CPEC): challenges and prospects. Area Develop. 4(4):466–473. doi: 10.1080/23792949.2018.1534549.
  • Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980.
  • Klambauer G, Unterthiner T, Mayr A, Hochreiter S. 2017. Self-normalizing neural networks. Adv Neural Inform Process Syst. 30:1–10.
  • Kulsoom I, Hua W, Hussain S, Chen Q, Khan G, Shihao D. 2023. SBAS-InSAR based validated landslide susceptibility mapping along the Karakoram Highway: a case study of Gilgit-Baltistan, Pakistan. Sci Rep. 13(1):3344. doi: 10.1038/s41598-023-30009-z.
  • Li B, Liu K, Wang M, He Q, Jiang Z, Zhu W, Qiao N. 2022. Global dynamic rainfall-induced landslide susceptibility mapping using machine learning. Remote Sens. 14(22):5795. doi: 10.3390/rs14225795.
  • Loche M, Alvioli M, Marchesini I, Bakka H, Lombardo L. 2022. Landslide susceptibility maps of Italy: lesson learnt from dealing with multiple landslide types and the uneven spatial distribution of the national inventory. Earth-Sci Rev. 232:104125. doi: 10.1016/j.earscirev.2022.104125.
  • Loshchilov I, Hutter F. 2017. Decoupled weight decay regularization. arXiv preprint arXiv: 05101.
  • Lv L, Chen T, Dou J, Plaza A. 2022. A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping. Int J Appl Earth Obs. 108:102713. doi: 10.1016/j.jag.2022.102713.
  • Melchiorre C, Matteucci M, Remondo J. 2006. Artificial neural networks and robustness analysis in landslide susceptibility zonation. The 2006 IEEE International joint conference on neural network proceedings. p. 4375–4381. doi: 10.1109/IJCNN.2006.247036.
  • Merghadi A, Yunus AP, Dou J, Whiteley J, Thaipham B, Bui DT, Avtar R, Abderrahmane B. 2020. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth-Sci Rev. 207:103225. doi: 10.1016/j.earscirev.2020.103225.
  • Mondini AC, Guzzetti F, Chang KT, Monserrat O, Martha TR, Manconi A. 2021. Landslide failures detection and mapping using synthetic aperture radar: past, present and future. Earth-Sci Rev. 216:103574. doi: 10.1016/j.earscirev.2021.103574.
  • Ngo PTT, Panahi M, Khosravi K, Ghorbanzadeh O, Kariminejad N, Cerda A, Lee S. 2021. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front. 12(2):505–519. doi: 10.1016/j.gsf.2020.06.013.
  • Nilofar M, Jiang WS, Ishtiaque M. 2014. The growing economic ties between Pakistan and china and its impact on the economy of Pakistan. IJRHAL. 2(12):49–54.
  • Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. 2018. CatBoost: unbiased boosting with categorical features. NeurIPS. 31:1–11.
  • Qing F, Zhao Y, Meng X, Su X, Qi T, Yue D. 2020. Application of machine learning to debris flow susceptibility mapping along the China–Pakistan Karakoram highway. Remote Sens. 12(18):2933. doi: 10.3390/rs12182933.
  • Rashid B, Iqbal J, Su LJ. 2020. Landslide susceptibility analysis of Karakoram highway using analytical hierarchy process and scoops 3D. J Mt Sci. 17(7):1596–1612. doi: 10.1007/s11629-018-5195-8.
  • Rehman MU, Zhang Y, Meng X, Su X, Catani F, Rehman G, Yue D, Khalid Z, Ahmad S, Ahmad I. 2020. Analysis of landslide movements using interferometric synthetic aperture radar: a case study in Hunza-Nagar Valley, Pakistan. Remote Sens. 12(12):2054. doi: 10.3390/rs12122054.
  • Roy J, Saha S, Arabameri A, Blaschke T, Bui DT. 2019. A novel ensemble approach for landslide susceptibility mapping (LSM) in Darjeeling and Kalimpong districts, West Bengal, India. Remote Sens. 11(23):2866. doi: 10.3390/rs11232866.
  • Searle M, Khan MA, Fraser J, Gough S, Jan MQ. 1999. The tectonic evolution of the Kohistan‐Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics. 18(6):929–949. doi: 10.1029/1999TC900042.
  • Su X-J, Zhang Y, Meng X-M, Yue D-X, Ma J-H, Guo F-Y, Zhou Z-Q, Rehman MU, Khalid Z, Chen G, et al. 2021. Landslide mapping and analysis along the China-Pakistan Karakoram Highway based on SBAS-InSAR detection in 2017. J Mt Sci. 18(10):2540–2564. doi: 10.1007/s11629-021-6686-6.
  • Su X, Zhang Y, Meng X, Rehman MU, Khalid Z, Yue D. 2022. Updating inventory, deformation, and development characteristics of landslides in Hunza Valley, NW Karakoram, Pakistan by SBAS-InSAR. Remote Sens. 14(19):4907. doi: 10.3390/rs14194907.
  • Taud H, Mas J. 2018. Multilayer perceptron (MLP). Geomatic approaches for modeling land change scenarios. p. 451–455.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. 2017. Attention is all you need. NeurIPS. 30:1–11.
  • Wang Y, Fang Z, Hong H. 2019. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci Total Environ. 666:975–993. doi: 10.1016/j.scitotenv.2019.02.263.
  • Wang Y, Fang Z, Wang M, Peng L, Hong H. 2020. Comparative study of landslide susceptibility mapping with different recurrent neural networks. Comput Geosci. 138:104445. doi: 10.1016/j.cageo.2020.104445.
  • Whiteley J, Chambers J, Uhlemann S, Wilkinson PB, Kendall J. 2019. Geophysical monitoring of moisture‐induced landslides: a review. Rev Geophys. 57(1):106–145. doi: 10.1029/2018RG000603.
  • Xu QS, Liang YZ. 2001. Monte Carlo cross validation. Chemom Intell Lab Syst. 56(1):1–11. doi: 10.1016/S0169-7439(00)00122-2.
  • Yang J, Li C, Zhang P, Dai X, Xiao B, Yuan L, Gao J. 2021. Focal attention for long-range interactions in vision transformers. NeurIPS. 34:30008–30022.
  • Yang T, Li Q, Chen X, Yin G, Li LH, De Maeyer P. 2020. Evaluation of spatiotemporal variability of temperature and precipitation over the Karakoram Highway region during the cold season by a Regional Climate Model. J Mt Sci. 17(9):2108–2122. doi: 10.1007/s11629-019-5772-5.
  • Ye P, Yu B, Chen W, Liu K, Ye L. 2022. Rainfall-induced landslide susceptibility mapping using machine learning algorithms and comparison of their performance in Hilly area of Fujian Province, China. Nat Hazards. 113(2):965–995. doi: 10.1007/s11069-022-05332-9.
  • Yixuetao SY, Shao P. 2021. An inventory dataset of the typical rockfalls and landslides in CPEC from 1970 to 2020. V2.
  • Zhang H, Song Y, Xu S, He Y, Li Z, Yu X, Liang Y, Wu W, Wang Y. 2022. Combining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: a case study of Wanzhou section of the Three Gorges Reservoir, China. Comput Geosci. 158:104966. doi: 10.1016/j.cageo.2021.104966.
  • Zhang H, Yin C, Wang S, Guo B. 2023. Landslide susceptibility mapping based on landslide classification and improved convolutional neural networks. Comput Geosci. 116(2):1931–1971.
  • Zhao C, Kang Y, Zhang Q, Lu Z, Li B. 2018. Landslide identification and monitoring along the Jinsha River catchment (Wudongde reservoir area), China, using the InSAR method. Remote Sens. 10(7):993. doi: 10.3390/rs10070993.
  • Zheng S, Lu J, Zhao H, Zhu X, Luo Z, Wang Y, Fu Y, Feng J, Xiang T, Torr PH. 2021. Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. p. 6881–6890.
  • Zimmerman T. 2015. The New Silk Roads: China, the US, and the Future of Central Asia: Center on International Cooperation New York NY, USA.