99
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The assessment of soil organic matter in the KwaZulu-natal province of South Africa and its relationship to spectroscopy data

, &
Article: 2361702 | Received 21 Feb 2024, Accepted 24 May 2024, Published online: 10 Jun 2024

References

  • Adeline KR, Gomez C, Gorretta N, Roger JM. 2017. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma. 288:143–153. doi: 10.1016/j.geoderma.2016.11.010.
  • Angelopoulou T, Balafoutis A, Zalidis G, Bochtis D. 2020. From laboratory to proximal sensing spectroscopy for soil organic carbon estimation—A review. Sustainability. 12(2):443. doi: 10.3390/su12020443.
  • Ayala Izurieta JE, Jara Santillán CA, Márquez CO, García VJ, Rivera-Caicedo JP, Van Wittenberghe S, Delegido J, Verrelst J. 2022. Improving the remote estimation of soil organic carbon in complex ecosystems with Sentinel-2 and GIS using Gaussian processes regression. Plant Soil. 479(1-2):159–183. doi: 10.1007/s11104-022-05506-1.
  • Bangelesa F, Adam E, Knight J, Dhau I, Ramudzuli M, Mokotjomela TM. 2020. Predicting soil organic carbon content using hyperspectral remote sensing in a degraded mountain landscape in Lesotho. Appl Environ Soil Sci. 2020:2158573.
  • Behera BK, Prasad R. 2020. Environmental technology and sustainability: physical, chemical and biological technologies for clean environmental management. The Netherlands: Elsevier.
  • Bernini A, Bosino A, Botha GA, Maerker M. 2021. Evaluation of gully erosion susceptibility using a maximum entropy model in the Upper Mkhomazi River Basin in South Africa. ISPRS Int. J. Geoinf. 10:729.
  • Bilgili AV, Van Es HM, Akbas F, Durak A, Hively WD. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. J Arid Environ. 74:229–238.
  • Bot A, Benites J. 2005. The importance of soil organic matter: key to drought-resistant soil and sustained food production; FAO Soils Bulletin 80; Food and Agricultural Organization of the United Nations, Rome, Italy.
  • Buddenbaum H, Steffens M. 2012. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012:1–12. doi: 10.1155/2012/274903.
  • Castillo E, Iglesias A, Ruiz-Cobo R. 2005. Chapter 9- Functional networks. Functional equations in applied sciences. 169–232.
  • Danner M, Locherer M, Hank T, Richter K. 2015. Spectral sampling with the ASD FieldSpec 4–theory, measurement, problems, interpretation. EnMAP Field Guides Technical Report, GFZ Data Services, Potsdam, Germany, 1–25.
  • Du Preez CC, Van Huyssteen CW, Mnkeni PN. 2011. Land use and soil organic matter in South Africa 2: a review on the influence of arable crop production. S Afr J Sci. 107(5/6):1–8. doi: 10.4102/sajs.v107i5/6.358.
  • Duarte RMBO, Duarte AC. 2019. Geochemistry soil, organic components. In Worsfold P, Poole C, Townshend A, Miró M, editors. Encyclopedia of analytical science. 3rd ed. Oxford: Academic Press; p. 329–339.
  • Fang Q, Hong H, Zhao L, Kukolich S, Yin K, Wang C. 2018. Visible and near-infrared reflectance spectroscopy for investigating soil mineralogy: a review. J Spectrosc. 2018:1–14.
  • Gao L, Zhu X, Han Z, Wang L, Zhao G, Jiang Y. 2017. Spectroscopy based estimation of soil organic matter in Brown-Forest areas of the Shandong Peninsula, China. Pedosphere. 1–12.
  • Gholizadeh A, Borůvka L, Saberioon M, Vašát R. 2013. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues. Appl Spectrosc. 67(12):1349–1362. doi: 10.1366/13-07288.
  • Google Earth. 2020. Emakhosaneni area. [accessed 2020 May 12]. https://earth.google.com/web/@-28.79943144,29.23423194,1272.68696279a,3832.42087508d,35y,0h,0t,0r/data=ChUaEwoLL2cvMXRkM2NmYnQYAiABKAI.
  • Götze C, Gläßer C. 2016. Spectral characterization of black materials for use as background in spectrometric laboratories. Spectrosc Lett. 49(7):498–505. doi: 10.1080/00387010.2016.1211708.
  • Haynes RJ, Dominy CS, Graham MH. 2003. Effect of agricultural land use on soil organic matter status and the composition of earthworm communities in KwaZulu-Natal, South Africa. Agric Ecosyst Environ. 95:453–464.
  • He T, Wang J, Lin Z, Cheng Y. 2009. Spectral features of soil organic matter. Geo Spat Inf Sci. 12:33–40.
  • Hong Y, Chen S, Liu Y, Zhang Y, Yu L, Chen Y, Liu Y, Cheng H, Liu Y. 2019. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena. 174:104–116. doi: 10.1016/j.catena.2018.10.051.
  • Hong Y, Chen S, Zhang Y, Chen Y, Yu L, Liu Y, Liu Y, Cheng H, Liu Y. 2018a. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: effects of two-dimensional correlation coefficient and extreme learning machine. Sci. Total Environ. 644:1232–1243. doi: 10.1016/j.scitotenv.2018.06.319.
  • Hong Y, Yu L, Chen Y, Liu Y, Liu Y, Liu Y, Cheng H. 2018b. Prediction of soil organic matter by VIS–NIR spectroscopy using normalized soil moisture index as a proxy of soil moisture. Remote Sens. 10:28.
  • Jia X, Xie M, Hu B, Zhou Y, Li H, Zhao W, Deng W, Shi Z. 2023. Prediction of soil organic carbon contents in Tibet using a visible near-infrared spectral library. Eurasian Soil Sci. 56:727–737.
  • Kooistra L, Wehrens R, Leuven RSEW, Buydens LMC. 2001. Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta. 446(1-2):97–105. doi: 10.1016/S0003-2670(01)01265-X.
  • Kuang B, Mouazen AM. 2012. Influence of the number of samples on prediction error of visible and near infrared spectroscopy of selected soil properties at the farm scale. Eur. J. Soil Sci. 63:421–429.
  • Li S, Shi Z, Chen S, Ji W, Zhou L, Yu W, Webster R. 2015. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai–Tibet plateau. Environ Sci Technol. 49(8):4980–4987.
  • Li X, Ren J, Zhao K, Liang Z. 2019. Correlation between spectral characteristics and physicochemical parameters of soda-saline soils in different states. Remote Sens. 11:388.
  • Liu H, Zhang Y, Zhang B. 2009. Novel hyperspectral reflectance models for estimating black-soil organic matter in Northeast China. Environ Monit Assess. 154(1-4):147–154. doi: 10.1007/s10661-008-0385-4.
  • Luo C, Zhang X, Meng X, Zhu H, Ni C, Chen M, Liu H. 2022. Regional mapping of soil organic matter content using multitemporal synthetic Landsat 8 images in Google Earth Engine. Catena. 209:105842. doi: 10.1016/j.catena.2021.105842.
  • Martens H, Naes T. 1989. Assessment, validation and choice of calibration method. In Multivariate calibration. 1st ed. New York: John Wiley & Sons; p. 237–266.
  • Mchunu C, Chaplot V. 2012. Land degradation impact on soil carbon losses through water erosion and CO2 emissions. Geoderma. 177-178:72–79. doi: 10.1016/j.geoderma.2012.01.038.
  • Motsara MR, Roy RN. 2008. Guide to laboratory establishment for plant nutrient analysis. In FAO fertilizer and plant nutrition bulletin. Rome: Food and Agriculture Organization; p. 1–219.
  • Mouazen AM, Kuang B, De Baerdemaeker J, Ramon H. 2010. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma. 158(1-2):23–31. doi: 10.1016/j.geoderma.2010.03.001.
  • Nawar S, Buddenbaum H, Hill J, Kozak J, Mouazen AM. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 155:510–522. doi: 10.1016/j.still.2015.07.021.
  • Obalum SE, Chibuike GU, Peth S, Ouyang Y. 2017. Soil organic matter as sole indicator of soil degradation. Environ Monit Assess. 189(4):176. doi: 10.1007/s10661-017-5881-y.
  • Phuong TT, Son NT. 2017. Land use change and its interactions with soil, water resources, and rural livelihoods in Hoa Binh province. Vietnam J Agric Sci. 15:249–262.
  • Qiao XX, Wang C, Feng MC, Yang WD, Ding GW, Sun H, Liang ZY, Shi CC. 2017. Hyperspectral estimation of soil organic matter based on different spectral preprocessing techniques. Spectrosc. Lett. 50(3):156–163. doi: 10.1080/00387010.2017.1297958.
  • Roper WR, Robarge WP, Osmond DL, Heitman JL. 2019. Comparing four methods of measuring soil organic matter in North Carolina soils. Soil Sci. Soc. Am. J. 83:466–474.
  • Rossel RV, Behrens T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma. 158(1-2):46–54. doi: 10.1016/j.geoderma.2009.12.025.
  • Rossel RV, Walvoort DJJ, McBratney AB, Janik LJ, Skjemstad JO. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131(1-2):59–75. doi: 10.1016/j.geoderma.2005.03.007.
  • Roudier P, Hedley CB, Lobsey CR, Rossel RV, Leroux C. 2017. Evaluation of two methods to eliminate the effect of water from soil vis–NIR spectra for predictions of organic carbon. Geoderma. 296:98–107. doi: 10.1016/j.geoderma.2017.02.014.
  • Santoiemma G. 2018. Recent methodologies for studying the soil organic matter. Appl Soil Ecol. 123:546–550. doi: 10.1016/j.apsoil.2017.09.011.
  • Savitzky A, Golay MJ. 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal Chem. 36(8):1627–1639. doi: 10.1021/ac60214a047.
  • Schulze R, Maharaj M, Lynch SD, Howe BJ, Melvil-Thomson B. 1997. South African atlas of agrohydrology and climatology. Water Research Commission Report TT82/96, University of Natal, Pietermaritzburg, South Africa.
  • Shepherd KD, Walsh MG. 2002. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J. 66(3):988–998. doi: 10.2136/sssaj2002.0988.
  • Srivastava R, Sethi M, Yadav RK, Bundela DS, Singh M, Chattaraj S, Singh SK, Nasre RA, Bishnoi SR, Dhale S, et al. 2017. Visible-near infrared reflectance spectroscopy for rapid characterization of salt-affected soil in the Indo-Gangetic Plains of Haryana, India. J Indian Soc Remote Sens. 45(2):307–315. doi: 10.1007/s12524-016-0587-0.
  • Statistics South Africa (SSA). 2011. Census 2011. [accessed 2019 June 20]. http://www.statssa.gov.za/.
  • The Unscrambler. 2014. The Unscrambler X v10.3 user manual. CAMO software AS, Nedre Vollgate, Oslo, Norway, 1–1370.
  • Van der Meer F. 2018. Near-infrared laboratory spectroscopy of mineral chemistry: a review. Int. J. Appl. Earth Obs. Geoinf. 65:71–78. doi: 10.1016/j.jag.2017.10.004.
  • Vasques GM, Grunwald SJOS, Sickman JO. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma. 146(1-2):14–25. doi: 10.1016/j.geoderma.2008.04.007.
  • Verster PSJ. 1998. Geological map 2828 (Harrismith), 1:250 000. Council for Geoscience, Pretoria, South Africa.
  • Vibhute AD, Kale KV, Mehrotra SC, Dhumal RK, Nagne AD. 2018. Determination of soil physicochemical attributes in farming sites through visible, near-infrared diffuse reflectance spectroscopy and PLSR modeling. Ecol Process. 7(1):1–12. doi: 10.1186/s13717-018-0138-4.
  • Virgawati S, Mawardi M, Sutiarso L, Shibusawa S, Segah H, Kodaira M. 2019. Explore the character of soil spectral reflectance relate to the soil organic matter content. J. Tek. Pertanian Lampung. 8:214–223.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wang J, Tiyip T, Ding J, Zhang D, Liu W, Wang F. 2017. Quantitative estimation of organic matter content in arid soil using Vis-NIR spectroscopy preprocessed by fractional derivative. J. Spectrosc. 2017:1–9.
  • Wei L, Yuan Z, Wang Z, Zhao L, Zhang Y, Lu X, Cao L. 2020. Hyperspectral inversion of soil organic matter content based on a combined spectral index model. Sensors. 20(10):2777. doi: 10.3390/s20102777.
  • Williams P, Manley M, Antoniszyn J. 2019. Near infrared technology: getting the best out of light. African Sun Media.
  • Worsham L, Markewitz D, Nibbelink NP, West LT. 2012. A comparison of three field sampling methods to estimate soil carbon content. For. Sci. 58:513–522.
  • Yu X, Liu Q, Wang Y, Liu X, Liu X. 2016. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. Catena. 137:340–349. doi: 10.1016/j.catena.2015.09.024.
  • Zhao Y, Wang X, Chen F, Li J, Wu J, Sun Y, Zhang Y, Deng T, Jiang S, Zhou X, et al. 2023. Soil organic matter enhances aboveground biomass in alpine grassland under drought. Geoderma. 433:116430. doi: 10.1016/j.geoderma.2023.116430.