0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cropping intensity mapping in Sentinel-2 and Landsat-8/9 remote sensing data using temporal transfer of a stacked ensemble machine learning model within google earth engine

, , &
Article: 2387786 | Received 11 Jan 2024, Accepted 30 Jul 2024, Published online: 06 Aug 2024

References

  • Abdali E, Valadan Zoej MJ, Taheri Dehkordi A, Ghaderpour E. 2023. A parallel-cascaded ensemble of machine learning models for crop type classification in google earth engine using multi-temporal sentinel-1/2 and landsat-8/9 remote sensing data. Remote Sens. 16(1):127. doi: 10.3390/rs16010127.
  • Alazba A, Aljamaan H. 2021. Code smell detection using feature selection and stacking ensemble: an empirical investigation. Inf Softw Technol. 138:106648. doi: 10.1016/j.infsof.2021.106648.
  • Aljenaid SS, Kadhem GR, AlKhuzaei MF, Alam JB. 2022. Detecting and assessing the spatio-temporal land use land cover changes of Bahrain Island during 1986–2020 using remote sensing and GIS. Earth Syst Environ. 6(4):787–802. doi: 10.1007/s41748-022-00315-z.
  • Arfasa GF, Owusu-Sekyere E, Doke DA. 2023. Past and future land use/land cover, and climate change impacts on environmental sustainability in Vea Catchment, Ghana. Geocarto Int. 38(1):1–44. doi: 10.1080/10106049.2023.2289458.
  • Bhattacharjee S, Islam MT, Kabir ME, Kabir MM. 2021. Land-use and land-cover change detection in a north-eastern wetland ecosystem of Bangladesh using remote sensing and GIS techniques. Earth Syst Environ. 5(2):319–340. doi: 10.1007/s41748-021-00228-3.
  • Breiman L. 2001. Random forests. Machine Learning. 45(1):5–32. doi: 10.1023/A:1010933404324.
  • Breiman L, Friedman J, Olshen RA, Stone CJ. 1984. Classification and regression trees (1st ed.). New York: Chapman and Hall/CRC. doi: 10.1201/9781315139470.
  • Das B, Rathore P, Roy D, Chakraborty D, Jatav RS, Sethi D, Kumar P. 2022. Comparison of bagging, boosting and stacking algorithms for surface soil moisture mapping using optical-thermal-microwave remote sensing synergies. Catena. 217:106485. doi: 10.1016/j.catena.2022.106485.
  • Dehkordi AT, Zoej MJV, Chegoonian AM, Mehran A, Jafari M. 2023. Improved water chlorophyll-A retrieval method based on mixture density networks using in-situ hyperspectral remote sensing data. IGARSS 2023-2023 IEEE international geoscience and remote sensing symposium.
  • Dehkordi AT, Zoej MJV, Mehran A, Jafari M, Chegoonian AM. 2024. Fuzzy similarity analysis of effective training samples to improve machine learning estimations of water quality parameters using sentinel-2 remote sensing data. IEEE J Sel Top Appl Earth Observations Remote Sens. 17:5121–5136. doi: 10.1109/JSTARS.2024.3364020.
  • Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, et al. 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36. doi: 10.1016/j.rse.2011.11.026.
  • Friedman JH. 2001. Greedy function approximation: a gradient boosting machine. Ann Statist. 29(5):1189–1232.
  • Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F. 2012. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst ManCybern C. 42(4):463–484. doi: 10.1109/TSMCC.2011.2161285.
  • Gao F, Jennewein J, Hively WD, Soroka A, Thieme A, Bradley D, Keppler J, Mirsky S, Akumaga U. 2023. Near real-time detection of winter cover crop termination using harmonized Landsat and Sentinel-2 (HLS) to support ecosystem assessment. Sci Remote Sens. 7:100073. doi: 10.1016/j.srs.2022.100073.
  • Ghaderpour E, Mazzanti P, Mugnozza GS, Bozzano F. 2023. Coherency and phase delay analyses between land cover and climate across Italy via the least-squares wavelet software. Int J Appl Earth Obs Geoinf. 118:103241. doi: 10.1016/j.jag.2023.103241.
  • Ghosh A, Nanda MK, Sarkar D, Sarkar S, Brahmachari K, Mainuddin M. 2023. Assessing the cropping intensity dynamics of the Gosaba CD block of Indian Sundarbans using satellite-based remote sensing. Environ Dev Sustain. 26(3):6341–6376. doi: 10.1007/s10668-023-02966-y.
  • González S, García S, Del Ser J, Rokach L, Herrera F. 2020. A practical tutorial on bagging and boosting based ensembles for machine learning: algorithms, software tools, performance study, practical perspectives and opportunities. Inform Fus. 64:205–237. doi: 10.1016/j.inffus.2020.07.007.
  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27. doi: 10.1016/j.rse.2017.06.031.
  • Gray J, Friedl M, Frolking S, Ramankutty N, Nelson A, Gumma MK. 2014. Mapping Asian cropping intensity with MODIS. IEEE J Sel Top Appl Earth Observations Remote Sensing. 7(8):3373–3379. doi: 10.1109/JSTARS.2014.2344630.
  • Gumma MK, Thenkabail PS, Panjala P, Teluguntla P, Yamano T, Mohammed I. 2022. Multiple agricultural cropland products of South Asia developed using Landsat-8 30 m and MODIS 250 m data using machine learning on the Google Earth Engine (GEE) cloud and spectral matching techniques (SMTs) in support of food and water security. GIScience Remote Sens. 59(1):1048–1077. doi: 10.1080/15481603.2022.2088651.
  • Guo Y, Xia H, Pan L, Zhao X, Li R. 2022. Mapping the northern limit of double cropping using a phenology-based algorithm and google earth engine. Remote Sens. 14(4):1004. https://www.mdpi.com/2072-4292/14/4/1004. doi: 10.3390/rs14041004.
  • Hao X, Liu L, Yang R, Yin L, Zhang L, Li X. 2023. A review of data augmentation methods of remote sensing image target recognition. Remote Sens. 15(3):827. https://www.mdpi.com/2072-4292/15/3/827. doi: 10.3390/rs15030827.
  • Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. 1998. Support vector machines. IEEE Intell Syst Their Appl. 13(4):18–28. doi: 10.1109/5254.708428.
  • Hodgson ME. 1988. Reducing the computational requirements of the minimum-distance classifier. Remote Sens Environ. 25(1):117–128. doi: 10.1016/0034-4257(88)90045-4.
  • Huang D, Wang J, Khayatnezhad M. 2021. Estimation of actual evapotranspiration using soil moisture balance and remote sensing. Iran J Sci Technol Trans Civ Eng. 45(4):2779–2786. doi: 10.1007/s40996-020-00575-7.
  • Huang H, Chen Y, Clinton N, Wang J, Wang X, Liu C, Gong P, Yang J, Bai Y, Zheng Y, et al. 2017. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens Environ. 202:166–176. doi: 10.1016/j.rse.2017.02.021.
  • Huang S, Tang L, Hupy JP, Wang Y, Shao G. 2021. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J For Res. 32(1):1–6. doi: 10.1007/s11676-020-01155-1.
  • Jana A, Jat MK, Saxena A, Choudhary M. 2022. Prediction of land use land cover changes of a river basin using the CA-Markov model. Geocarto Int. 37(26):14127–14147. doi: 10.1080/10106049.2022.2086634.
  • Kabir S, Pahlevan N, O'Shea RE, Barnes BB. 2023. Leveraging Landsat-8/-9 underfly observations to evaluate consistency in reflectance products over aquatic environments. Remote Sens Environ. 296:113755. doi: 10.1016/j.rse.2023.113755.
  • Khanal S, Kc K, Fulton JP, Shearer S, Ozkan E. 2020. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 12(22):3783. doi: 10.3390/rs12223783.
  • Kumar A, Mehta M. 2023. Investigating the applicability of a simple iterative approach for aerosol optical depth (AOD) retrieval over diverse land surface types from Landsat 8 and Sentinel 2 using visible and near-infrared (VNIR) spectral bands. Atmos Environ. 314:120082. doi: 10.1016/j.atmosenv.2023.120082.
  • Liu C, Zhang Q, Tao S, Qi J, Ding M, Guan Q, Wu B, Zhang M, Nabil M, Tian F, et al. 2020. A new framework to map fine resolution cropping intensity across the globe: algorithm, validation, and implication. Remote Sens Environ. 251:112095. doi: 10.1016/j.rse.2020.112095.
  • Liu L, Xiao X, Qin Y, Wang J, Xu X, Hu Y, Qiao Z. 2020. Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sens Environ. 239:111624. doi: 10.1016/j.rse.2019.111624.
  • Liu X, Zheng J, Yu L, Hao P, Chen B, Xin Q, Fu H, Gong P. 2021. Annual dynamic dataset of global cropping intensity from 2001 to 2019. Sci Data. 8(1):283. doi: 10.1038/s41597-021-01065-9.
  • Lobell DB, Asner GP. 2004. Cropland distributions from temporal unmixing of MODIS data. Remote Sens Environ. 93(3):412–422. doi: 10.1016/j.rse.2004.08.002.
  • Main-Knorn M, Pflug B, Louis J, Debaecker V, Müller-Wilm U, Gascon F. (2017). Sen2Cor for sentinel-2. Image and signal processing for remote sensing XXIII. doi: 10.1117/12.2278218.
  • Masek JG, Wulder MA, Markham B, McCorkel J, Crawford CJ, Storey J, Jenstrom DT. 2020. Landsat 9: Empowering open science and applications through continuity. Remote Sens Environ. 248:111968. doi: 10.1016/j.rse.2020.111968.
  • Maxwell AE, Warner TA, Fang F. 2018. Implementation of machine-learning classification in remote sensing: an applied review. Int J Remote Sens. 39(9):2784–2817. doi: 10.1080/01431161.2018.1433343.
  • MohanRajan SN, Loganathan A, Manoharan P. 2020. Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: techniques and Challenges. Environ Sci Pollut Res Int. 27(24):29900–29926. doi: 10.1007/s11356-020-09091-7.
  • Mullapudi A, Vibhute AD, Mali S, Patil CH. 2023. Spatial and seasonal change detection in vegetation cover using time-series landsat satellite images and machine learning methods. SN Comput Sci. 4(3):254. doi: 10.1007/s42979-023-01710-7.
  • Norris JR. 2012. Markov chains. Cambridge, UK: Cambridge University Press. doi: 10.1017/CBO9780511810633.
  • Palanisamy PA, Jain K, Bonafoni S. 2023. Machine learning classifier evaluation for different input combinations: a case study with landsat 9 and sentinel-2 data. Remote Sensing. 15(13):3241. doi: 10.3390/rs15133241.
  • Pettinger LR. 1971. Field data collection–an essential element in remote sensing applications. proceedings of the international workshop on earth resources survey systems, Washington, DC.
  • Pluto-Kossakowska J. 2021. Review on multitemporal classification methods of satellite images for crop and arable land recognition. Agriculture. 11(10):999. https://www.mdpi.com/2077-0472/11/10/999. doi: 10.3390/agriculture11100999.
  • Pontius RG, Jr, Millones M. 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int J Remote Sens. 32(15):4407–4429. doi: 10.1080/01431161.2011.552923.
  • Pontius RG. Jr, 2000. Comparison of categorical maps. Photogramm Eng Remote Sens. 66(20):25.
  • Rahmati A, Zoej MJV, Dehkordi AT. 2022. Early identification of crop types using Sentinel-2 satellite images and an incremental multi-feature ensemble method (Case study: shahriar, Iran). Adv Space Res. 70(4):907–922. doi: 10.1016/j.asr.2022.05.038.
  • Saini R, Ghosh SK. 2017. Ensemble classifiers in remote sensing: a review. 2017 international conference on computing, communication and automation (ICCCA). doi: 10.1109/CCAA.2017.8229969.
  • Schulz K, Hänsch R, Sörgel U. 2018. Machine learning methods for remote sensing applications: an overview. Earth resources and environmental remote sensing/GIS applications IX, 10790, 1079002. doi: 10.1117/12.2503653.
  • Selvaraj JJ, Pérez BEG. 2023. An enhanced approach to mangrove forest analysis in the Colombian Pacific coast using optical and SAR data in Google Earth Engine. Remote Sens Appl Soc Environ. 30:100938. doi: 10.1016/j.rsase.2023.100938.
  • Shao Y, Lunetta RS, Wheeler B, Iiames JS, Campbell JB. 2016. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sens Environ. 174:258–265. doi: 10.1016/j.rse.2015.12.023.
  • Shawky M, Ahmed MR, Ghaderpour E, Gupta A, Achari G, Dewan A, Hassan QK. 2023. Remote sensing-derived land surface temperature trends over South Asia. Ecol Inf. 74:101969. doi: 10.1016/j.ecoinf.2022.101969.
  • Shen Y, Zhang X, Yang Z, Ye Y, Wang J, Gao S, Liu Y, Wang W, Tran KH, Ju J. 2023. Developing an operational algorithm for near-real-time monitoring of crop progress at field scales by fusing harmonized Landsat and Sentinel-2 time series with geostationary satellite observations. Remote Sens Environ. 296:113729. doi: 10.1016/j.rse.2023.113729.
  • Sherpa SF, Shirzaei M. 2022. Country‐wide flood exposure analysis using Sentinel‐1 synthetic aperture radar data: case study of 2019 Iran flood. J Flood Risk Manag. 15(1):e12770. doi: 10.1111/jfr3.12770.
  • Shibabaw A, Berhane T, Awgichew G, Walelgn A, Muhamed AA. 2023. Hedging the effect of climate change on crop yields by pricing weather index insurance based on temperature. Earth Syst Environ. 7(1):211–221. doi: 10.1007/s41748-022-00298-x.
  • Sidhu N, Pebesma E, Câmara G. 2018. Using Google Earth Engine to detect land cover change: Singapore as a use case. Eur J Remote Sens. 51(1):486–500. doi: 10.1080/22797254.2018.1451782.
  • Silvero NEQ, Demattê JAM, Amorim MTA, dos Santos NV, Rizzo R, Safanelli JL, Poppiel RR, de Sousa Mendes W, Bonfatti BR. 2021. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: a comparison. Remote Sens Environ. 252:112117. doi: 10.1016/j.rse.2020.112117.
  • Singh R, Biswas M, Pal M. 2022. Cloud detection using sentinel 2 imageries: a comparison of XGBoost, RF, SVM, and CNN algorithms. Geocarto Int. 38(1):1–32. doi: 10.1080/10106049.2022.2146211.
  • Sishodia RP, Ray RL, Singh SK. 2020. Applications of remote sensing in precision agriculture: A review. Remote Sens. 12(19):3136. doi: 10.3390/rs12193136.
  • Smith P. 2013. Delivering food security without increasing pressure on land. Global Food Sec. 2(1):18–23. doi: 10.1016/j.gfs.2012.11.008.
  • Taheri Dehkordi A, Valadan Zoej MJ, Ghasemi H, Ghaderpour E, Hassan QK. 2022. A new clustering method to generate training samples for supervised monitoring of long-term water surface dynamics using landsat data through google earth engine. Sustainability. 14(13):8046. https://www.mdpi.com/2071-1050/14/13/8046. doi: 10.3390/su14138046.
  • Taheri Dehkordi A, Valadan Zoej MJ, Ghasemi H, Jafari M, Mehran A. 2022. Monitoring long-term spatiotemporal changes in iran surface waters using landsat imagery. Remote Sens. 14(18):4491. doi: 10.3390/rs14184491.
  • Tao J, Wang Y, Qiu B, Wu W. 2022. Exploring cropping intensity dynamics by integrating crop phenology information using Bayesian networks. Comput Electron Agric. 193:106667. doi: 10.1016/j.compag.2021.106667.
  • Tariq A, Yan J, Gagnon AS, Riaz Khan M, Mumtaz F. 2023. Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spatial Inform Sci. 26(3):302–320. doi: 10.1080/10095020.2022.2100287.
  • Vasilakos C, Kavroudakis D, Georganta A. 2020. Machine learning classification ensemble of multitemporal sentinel-2 images: the case of a mixed mediterranean ecosystem. Remote Sens. 12(12):2005. https://www.mdpi.com/2072-4292/12/12/2005. doi: 10.3390/rs12122005.
  • Wang M, Zheng Y, Huang C, Meng R, Pang Y, Jia W, Zhou J, Huang Z, Fang L, Zhao F. 2022. Assessing Landsat-8 and Sentinel-2 spectral-temporal features for mapping tree species of northern plantation forests in Heilongjiang Province, China. Forest Ecosyst. 9:100032. doi: 10.1016/j.fecs.2022.100032.
  • Wu W, Yu Q, You L, Chen K, Tang H, Liu J. 2018. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy. 76:515–525. doi: 10.1016/j.landusepol.2018.02.032.
  • Wulder MA, Loveland TR, Roy DP, Crawford CJ, Masek JG, Woodcock CE, Allen RG, Anderson MC, Belward AS, Cohen WB, et al. 2019. Current status of Landsat program, science, and applications. Remote Sens Environ. 225:127–147. doi: 10.1016/j.rse.2019.02.015.
  • Xiang M, Yu Q, Wu W. 2019. From multiple cropping index to multiple cropping frequency: observing cropland use intensity at a finer scale. Ecol Indic. 101:892–903. doi: 10.1016/j.ecolind.2019.01.081.
  • Yan H, Liu F, Qin Y, Niu Z, Doughty R, Xiao X. 2019. Tracking the spatio-temporal change of cropping intensity in China during 2000–2015. Environ Res Lett. 14(3):035008. doi: 10.1088/1748-9326/aaf9c7.
  • You L, Sun Z. 2022. Mapping global cropping system: challenges, opportunities, and future perspectives. Crop and Environ. 1(1):68–73. doi: 10.1016/j.crope.2022.03.006.
  • Zhang M, Wu B, Zeng H, He G, Liu C, Tao S, Zhang Q, Nabil M, Tian F, Bofana J, et al. 2021. GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery. Earth Syst Sci Data. 13(10):4799–4817. doi: 10.5194/essd-13-4799-2021.
  • Zhang Y, Liu J, Shen W. 2022. A review of ensemble learning algorithms used in remote sensing applications. Appl Sci. 12(17):8654. https://www.mdpi.com/2076-3417/12/17/8654. doi: 10.3390/app12178654.
  • Zhao Y, Feng J, Luo L, Bai L, Wan H, Ren H. 2021. Monitoring cropping intensity dynamics across the North China Plain from 1982 to 2018 using GLASS LAI products. Remote Sens. 13(19):3911. doi: 10.3390/rs13193911.