209
Views
3
CrossRef citations to date
0
Altmetric
Tunnels and Underground Structures

Model-Based Assessment of Long-Term Serviceability and Fire Resistance for Underground Reinforced Concrete Ducts

(PhD Student) , (Masters Student) & (Professor)

References

  • Chan YN, Peng GF, Anson M. Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures. Cem. Concr. Compos. 1999; 21(1): 23–27. doi: 10.1016/S0958-9465(98)00034-1
  • Phan LT, Lawson JR, Davis FL. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater. Struct. 2001; 34(2): 83–91. doi: 10.1007/BF02481556
  • Hertz KD. Limits of spalling of fire-exposed concrete. Fire Saf. J. 2003; 38(2): 103–116. doi: 10.1016/S0379-7112(02)00051-6
  • Arioz O. Effects of elevated temperatures on properties of concrete. Fire Saf. J. 2007; 42(8): 516–522. doi: 10.1016/j.firesaf.2007.01.003
  • Liu JC, Tan KH, Yao Y. A new perspective on nature of fire-induced spalling in concrete. Constr. Build Mater. 2019; 184: 581–590. doi: 10.1016/j.conbuildmat.2018.06.204
  • Li Y, Zhang Y, Yang EH, Tan KH. Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure. Cem. Concr. Res. 2019; 116: 168–178. doi: 10.1016/j.cemconres.2018.11.009
  • Pavani HP, Tadepalli T, Agarwal AK. Estimation of porosity and pore distribution in hydrated portland cement at elevated temperatures using synchrotron micro tomography. J. Adv. Concr. Technol. 2019; 17(1): 34–45. doi: 10.3151/jact.17.34
  • Majorana CE, Salomoni V, Schrefler BA. Hygrothermal and mechanical model of concrete at high temperature. Mater. Struct. 1998; 31(6): 378–386. doi: 10.1007/BF02480710
  • Kalifa P, Menneteau FD, Quenard D. Spalling and pore pressure in HPC at high temperatures. Cem. Concr. Res. 2000; 30(12): 1915–1927. doi: 10.1016/S0008-8846(00)00384-7
  • Gawin D, Pesavento F, Schrefler BA. Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete. Comput. Methods Appl. Mech. Eng. 2006; 195(41–43): 5707–5729. doi: 10.1016/j.cma.2005.10.021
  • Fu Y, Li L. Study on mechanism of thermal spalling in concrete exposed to elevated temperatures. Mater. Struct. 2011; 44(1): 361–376. doi: 10.1617/s11527-010-9632-6
  • Zhang HL, Davie CT. A numerical investigation of the influence of pore pressures and thermally induced stresses for spalling of concrete exposed to elevated temperatures. Fire Saf. J. 2013; 59: 102–110. doi: 10.1016/j.firesaf.2013.03.019
  • Gawin D, Pesavento F, Schrefler BA. Modelling of hygro-thermal behaviour of concrete at high temperature with thermo-chemical and mechanical material degradation. Comput. Methods Appl. Mech. Eng. 2003; 192(13–14): 1731–1771. doi: 10.1016/S0045-7825(03)00200-7
  • Capua DD, Mari AR. Nonlinear analysis of reinforced concrete cross-sections exposed to fire. Fire Saf. J. 2007; 42(2): 139–149. doi: 10.1016/j.firesaf.2006.08.009
  • El-Fitiany SF, Youssef MA. Assessing the flexural and axial behaviour of reinforced concrete members at elevated temperatures using sectional analysis. Fire Saf. J. 2009; 44(5): 691–703. doi: 10.1016/j.firesaf.2009.01.005
  • Chen YH, Chang YF, Yao GC, Sheu MS. Experimental research on post-fire behaviour of reinforced concrete columns. Fire Saf. J. 2009; 44(5): 741–748. doi: 10.1016/j.firesaf.2009.02.004
  • Tan KH, Nguyen TT. Experimental behaviour of restrained reinforced concrete columns subjected to equal biaxial bending at elevated temperatures. Eng. Struct. 2013; 56: 823–836. doi: 10.1016/j.engstruct.2013.06.013
  • Monte FL, Felicetti R. Heated slabs under biaxial compressive loading: a test set-up for the assessment of concrete sensitivity to spalling. Mater. Struct. 2017; 50(192): 192–204. doi: 10.1617/s11527-017-1055-1
  • Liu JC, Tan KH. Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature. Cem. Concr. Compos. 2018; 93: 235–245. doi: 10.1016/j.cemconcomp.2018.07.015
  • Maekawa K, Ishida T, Kishi T. Multi-Scale Modeling of Structural Concrete. Taylor & Francis: Abingdon; 2008.
  • Maekawa K, Pimanmas A, Okamura H. Nonlinear Mechanics of Reinforced Concrete. Spon Press: London; 2003.
  • Iwama K, Ishibashi N, Maekawa K. Modelling of decomposition and self-healing processes of hardened cement paste exposed to high temperature. The 8th International Conference of Asian Concrete Federation; 2018 November 4–7; Fuzhou, China: 2018. pp. 227–234.
  • Iwama K, Higuchi K, Maekawa K. Multi-scale modelling of deteriorating concrete at elevated temperature and collapse simulation of underground ducts. 10th International Conference on Fracture Mechanics of Concrete and Concrete; 2019 June 23–26; Bayonne, France: 2019.
  • Otabe Y, Kishi T. Development of hydration and strength model for quality evaluation of concrete. Ind. Sci. Univ. Tokyo 2005; 57(2): 37–42 (in Japanese).
  • Poon CS, Azhar S, Anson M, Wong YK. Strength and durability recovery of fire-damaged concrete after post-fire-curing. Cem. Concr. Res. 2001; 31(9): 1307–1318. doi: 10.1016/S0008-8846(01)00582-8
  • Abe T, Furumura F, Tomatsuri K, Kuroha K, Kokubo I. Mechanical properties of high strength concrete at high temperatures. J. Struct. Constr. Eng. AIJ. 1999; 64(515): 163–168 (in Japanese ). doi: 10.3130/aijs.64.163_1
  • Biot MA. General theory of three-dimensional consolidation. J. Appl. Phys. 1941; 12(2): 155–164. doi: 10.1063/1.1712886
  • Biot MA. Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 1955; 26(2): 182–185. doi: 10.1063/1.1721956
  • Bazant ZP, Sener S, Kim JK. Effect of cracking on drying permeability and diffusivity of concrete. ACI Mater. J. 1987; 84(5): 351–357.
  • Maekawa K, Zhu X, Chijiwa N, Tanabe S. Mechanism of long-term excessive deformation and delayed shear failure of underground RC box culverts. J. Adv. Concr. Technol. 2016; 14(5): 183–204. doi: 10.3151/jact.14.183
  • Towhata I, Ishihara K. Modeling soil deformation undergoing cyclic rotation of principal stress axes. Proc. 5th Int. Conf. Numer. Method Geomech. 1985; 523–30.
  • Soltani M, Maekawa K. Numerical simulation of progressive shear localization and scale effect in cohesionless soil media. Int. J. Non. Linear. Mech. 2015; 69: 1–13. doi: 10.1016/j.ijnonlinmec.2014.10.014
  • Simo JC, Armero F. Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int. J. Numer. Methods Eng. 1992; 33(141): 1413–1449. doi: 10.1002/nme.1620330705
  • Simo JC, Armero F, Taylor RL. Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput. Methods Appl. Mech. Eng. 1993; 110(3–4): 359–386. doi: 10.1016/0045-7825(93)90215-J
  • Kuwano R. Trapdoor tests for the evaluation of earth pressure acting on a buried structure in an embankment. Proc. 9th International symposium on new technologies for urban safety of mega cities in Asia; 2010 October 13–14; Kobe, Japan: 2010.
  • Ikeda S, Uji K. Studies on the effect of bond on the shear behavior of reinforced concrete beams. J. JSCE 1980; 293: 101–109 (in Japanese).
  • Tanaka Y, Kishi T, Maekawa K. Experimental research on the structural mechanism of RC members containing artificial crack in shear. J. JSCE 2005; 69: 109–122 (in Japanese).
  • Maekawa K, Fukuura N. Nonlinear modeling of 3D structural reinforced concrete and seismic performance assessment. In Infrastructure Systems for Nuclear Energy. Chapter 11. John Wiley & Sons: Chichester; 2014.
  • Lu L, Yuan Y, Caspeele R, Taerwe L. Influencing factors for fire performance of simply supported RC beams with implicit and explicit transient creep strain material models. Fire Saf. J. 2015; 73: 29–36. doi: 10.1016/j.firesaf.2015.02.009
  • Bamonte P, Kalaba N, Felicetti R. Computational study on prestressed concrete members exposed to natural fires. Fire Saf. J. 2018; 97: 54–65. doi: 10.1016/j.firesaf.2018.02.006
  • Jin L, Zhang R, Dou G, Du X. Fire resistance of steel fiber reinforced concrete beams after low-velocity impact loading. Fire Saf. J. 2018; 98: 24–37. doi: 10.1016/j.firesaf.2018.04.003
  • Okada K, Kobayashi K, Miyagawa T. Influence of longitudinal cracking due to reinforcement corrosion on characteristics of reinforced concrete members. ACI Struct. J. 1988; 85(2): 134–140.
  • Yamamoto T, Miyagawa T. Mechanical performance of RC structural material and member deteriorated by corrosion of reinforcing steel. J. Soc. Mater. Sci. Jpn. 2007; 56(8): 684–693 (in Japanese). doi: 10.2472/jsms.56.684
  • Toongoenthong K, Maekawa K. Multi-mechanical approach to structural performance assessment of corroded RC members in shear. J. Adv. Concr. Technol. 2005; 3(1): 107–122. doi: 10.3151/jact.3.107
  • Pimanmas A, Maekawa K. Influence of pre-crack on RC behavior in shear. J. JSCE 2001; 50(669): 277–291.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.