1,405
Views
7
CrossRef citations to date
0
Altmetric
Tunnels and Underground Structures

Nonlinear Time-Dependent Analysis of the Load-Bearing Capacity of a Single Permanent Shotcrete Lining at the Brenner Base Tunnel

(Dipl.-Ing. Dr.techn.) ORCID Icon, (Dipl.-Ing.) ORCID Icon, (Dipl.-Ing. Dr.techn.) ORCID Icon, (O.Univ.Prof. Dipl.-Ing. Dr.techn.) ORCID Icon, (Dipl.-Ing. Dr.techn) & (O.Univ.Prof. Dipl.-Ing. MSc. Ph.D. Dr.phil.)

References

  • Bergmeister K. Brenner Basistunnel - Brenner Base Tunnel - Galleria di Base del Brennero, Tappeiner Verlag, 2011.
  • Cordes T, Hofmann M, Murr R, Bergmeister K. Aktuelle Entwicklungen der Spritzbeton-technologie und Spritzbetonbauweise am Brenner Basistunnel. In 12. Spritzbeton-Tagung, Alpach, Tirol, 2018.
  • Pöttler R. Time-dependent rock–shotcrete interaction a numerical shortcut. Comput. Geotech. 1990; 9: 149–169. doi: 10.1016/0266-352X(90)90011-J
  • Cordes T, Schneider-Muntau B, Bergmeister K. Inverse analysis of the loading state of a single permanent shotcrete lining at the BBT. In ECCOMAS EURO:TUN, Innsbruck, 2017.
  • Neuner M, Gamnitzer P, Hofstetter G. An extended damage plasticity model for shotcrete: formulation and comparison with other shotcrete models. Materials 2017; 10: 1.
  • European Committee for Standardization. EN 1992-1-1: Design of Concrete Structures. CEN: Brussels, 2015.
  • SKAVA consulting ZT-GmbH. Design of the permanent rescue tunnel - BBT H33. BBT Internal, Innsbruck, 2018.
  • Abaqus. ABAQUS v6.14 Documentation. Simulia, Dassault Systèmes, Providence, Rhode Island, 2015.
  • Neuner M, Schreter M, Unteregger D, Hofstetter G. Influence of the constitutive model for shotcrete on the predicted structural behavior of the shotcrete shell of a deep tunnel. Materials 2017; 10: 6.
  • Schreter M, Neuner M, Unteregger D, Hofstetter G. On the importance of advanced constitutive models in finite element simulations of deep tunnel advance. Tunnelling and Underground Space Technology 2018; 80: 103–113. doi: 10.1016/j.tust.2018.06.008
  • Neuner M, Schreter M, Hofstetter G. Comparative investigation of constitutive models for shotcrete based on numerical simulations of deep tunnel advance. In Numerical Methods in Geotechnical Engineering: 9th European Conference on Numerical Methods in Geotechnical Engineering, CRC Press Taylor & Francis Group, 2018, pp. 103–108.
  • Grassl P, Jirásek M. Damage-plastic model for concrete failure. Int. J. Solids Struct. 2006; 43: 7166–7196. doi: 10.1016/j.ijsolstr.2006.06.032
  • ACI Committee, 209. 209R-92: Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures, 1992.
  • Bažant ZP, Prasannan S. Solidification theory for concrete creep. I: Formulation. J. Eng. Mech. 1989; 115: 1691–1703. doi: 10.1061/(ASCE)0733-9399(1989)115:8(1691)
  • Brinkgreve R, Swolfs W, Engin E, Waterman S, Chesaru A, Bonnier P, Galavi V. PLAXIS 2D 2010, 2010.
  • Schädlich B, Schweiger HF. A new constitutive model for shotcrete. In Numerical Methods in Geotechnical Engineering: 8th European Conference on Numerical Methods in Geotechnical Engineering, CRC Press, Taylor & Francis Group, 2014, pp. 103–108.
  • Neuner M, Cordes T, Drexel M, Hofstetter G. Time-dependent material properties of shotcrete: experimental and numerical study. Materials 2017; 10(9), 1067. doi: 10.3390/ma10091067
  • ÖVBB - Österreichische Vereinigung für Beton und Bautechnik. Richtlinie Spritzbeton - 2009, 2009.
  • Dummer A. Numerische Modellierung und experimentelle Untersuchung des Materialverhaltens von jungem Spritzbeton mit Anwendung für den Brenner Basistunnel (Master Thesis, in German). Universität Innsbruck, 2019.