230
Views
1
CrossRef citations to date
0
Altmetric
Scientific Paper

Geometric and Material Nonlinear Analyses of Trusses Subjected to Thermomechanical Loads

, &

References

  • Masoodi AR. Analytical solution for optimum location of belt truss based on stability analysis. Proc Inst Civ Eng: Struct Build. 2019; 172(5): 382–388. doi:10.1680/jstbu.17.00187
  • Moghaddam SH, Masoodi AR. Elastoplastic nonlinear behavior of planar steel gabled frame. Advances in Computational Design. 2019; 4(4): 397–413.
  • Rezaiee-Pajand M, Masoodi AR, Bambaeechee M. Tapered beam–column analysis by analytical solution. Proc Inst Civ Eng: Struct Build. 2019; 172(11): 789–804. doi:10.1680/jstbu.18.00062
  • Rezaiee-Pajand M, Masoodi AR. Stability analysis of frame having FG tapered beam–column. International Journal of Steel Structures. 2019; 19(2): 446–468. doi:10.1007/s13296-018-0133-8
  • Wang C-S, Wang Q, Xu Y. Fatigue evaluation of a strengthened steel truss bridge. Struct Eng Int. 2013; 23(4): 443–449. doi:10.2749/101686613X13627347100112
  • Yu X, Deng Y, Yan B. Case study of the 156 m simply supported steel truss railway bridge. Struct Eng Int. 2017; 27(4): 563–568. doi:10.2749/222137917X14881937844603
  • Georgiev LD, Ivanov SD. Retrofitting old oteel riveted railway truss bridges in Bulgaria: A case study. Struct Eng Int. 2020; 30(1): 124–127. doi:10.1080/10168664.2019.1686337
  • Chen JT, Chang YL, Leu SY, Lee JW. Static analysis of the free-free trusses by using a self-regularization approach. Journal of Mechanics. 2017; 34(4): 505–518. doi:10.1017/jmech.2017.15
  • Gao W. Finite element analysis of structures with interval parameters. Journal of Mechanics. 2011; 23(1): 79–85. doi:10.1017/S1727719100001106
  • Kondoh K, Atluri SN. Influence of the local buckling on global stability: simplified, large deformation, post-buckling analysis of plane trusses. Computers and Structures. 1985; 21(4): 613–627. doi:10.1016/0045-7949(85)90140-3
  • Thompson JMT, Hunt GW. General Theory of Elastic Stability. NewYork: Wiley, 1973.
  • Nemat-Nasser S, Shatoff HD. Numerical analysis of pre- and post-critical response of elastic continua at finite strains. Comput Struct. 1973; 3(5): 983–999. doi:10.1016/0045-7949(73)90034-5
  • Noor AK, Peters JM. Recent advances in reduction methods for instability analysis of structures. Comput Struct. 1983; 16(1): 67–80. doi:10.1016/0045-7949(83)90148-7
  • Ogawa K, Yamanari M, Makino Y, Kurobane Y, Yamashita M, Sakamoto S. Buckling and post-buckling behavior of complete tubular trusses under cyclic loading. Offshore Technology Conference 1987.
  • Hill CD, Blandford GE, Wang ST. Post-buckling analysis of steel space trusses. Journal of Structural Engineering. 1989; 115(4): 900–919. doi:10.1061/(ASCE)0733-9445(1989)115:4(900)
  • Ramesh G, Krishnamoorthy CS. Inelastic post-buckling analysis of truss structures by dynamic relaxation method. Int J Numer Methods Eng. 1994; 37(21): 3633–3657. doi:10.1002/nme.1620372105
  • Kala Z, Kalina M, Frantík P. Buckling and post-buckling of the von Mises planar truss. AIP Conf Proc. 2015; 1648(1): 850024. doi:10.1063/1.4913079
  • Mondkar DP, Powell GH. Finite element analysis of non-linear static and dynamic response. Int J Numer Methods Eng. 1977; 11(3): 499–520. doi:10.1002/nme.1620110309
  • Bergan PG, Horrigmoe G, Bråkeland B, Søreide TH. Solution techniques for non−linear finite element problems. Int J Numer Methods Eng. 1978; 12(11): 1677–1696. doi:10.1002/nme.1620121106
  • Mondkar DP, Powell GH. Evaluation of solution schemes for nonlinear structures. Comput Struct. 1978; 9(3): 223–236. doi:10.1016/0045-7949(78)90106-2
  • Crisfield MA. A fast incremental/iterative solution procedure that handles “snap-through”. Comput Struct. 1981; 13(1): 55–62. doi:10.1016/0045-7949(81)90108-5
  • Ramm E. Strategies for tracing the nonlinear response near limit points. In Nonlinear Finite Element Analysis in Structural Mechanics: Proceedings of the Europe-US Workshop Ruhr-Universität Bochum, Germany, July 28–31, 1980, Wunderlich W, Stein E, Bathe KJ (eds), Springer Berlin Heidelberg: Berlin, Heidelberg, 1981; 63–89.
  • Bathe K-J, Dvorkin EN. On the automatic solution of nonlinear finite element equations. Comput Struct. 1983; 17(5): 871–879. doi:10.1016/0045-7949(83)90101-3
  • Bellini PX, Chulya A. An improved automatic incremental algorithm for the efficient solution of nonlinear finite element equations. Comput Struct. 1987; 26(1): 99–110. doi:10.1016/0045-7949(87)90240-9
  • Rezaiee-Pajand M, Naghavi AR. Accurate solutions for geometric nonlinear analysis of eight trusses. Mech Based Des Struct Mach. 2011; 39(1): 46–82. doi:10.1080/15397734.2010.515297
  • Leon SE, Paulino GH, Pereira A, Menezes IFM, Lages EN. A unified library of nonlinear solution schemes. Appl Mech Rev. 2012; 64(4): 040803-040803-26.
  • Clarke MJ, Hancock GJ. A study of incremental-iterative strategies for non-linear analyses. Int J Numer Methods Eng. 1990; 29(7): 1365–1391. doi:10.1002/nme.1620290702
  • Saffari H, Fadaee MJ, Tabatabaei R. Nonlinear analysis of space trusses using modified normal flow algorithm. Journal of Structural Engineering. 2008; 134(6): 998–1005. doi:10.1061/(ASCE)0733-9445(2008)134:6(998)
  • Šumarac D, Perović Z. Cyclic plasticity of trusses. Arch Appl Mech. 2015; 85(9): 1513–1526. doi:10.1007/s00419-014-0954-7
  • Benedetti D, Ionita V. Non linear analysis of space trusses. Meccanica. 1974; 9(4): 274–282. doi:10.1007/BF02175807
  • Teixeira de Freitas JA, Moitinho de Almeida JPB, Esteves Virtuoso FB. Nonlinear analysis of elastic space trusses. Meccanica. 1985; 20(2): 144–150. doi:10.1007/BF02337633
  • Tin-Loi F, Xia S. Geometrically nonlinear elastic analysis of space trusses. Struct Eng Mech. 1999; 7(4): 345–360. doi:10.12989/sem.1999.7.4.345
  • Giuliani ME. Hybrid truss and full web system for new sardinia viaducts. Struct Eng Int. 2003; 13(2): 119–123. doi:10.2749/101686603777964784
  • Ivanov S, Geier R, Rebelo C, Pedrosa B. Innovative strengthening method for steel truss nodes—experimental results. Struct Eng Int. 2019; 29(4): 542–546. doi:10.1080/10168664.2019.1613945
  • Tada M, Suito A. Static and dynamic post-buckling behavior of truss structures. Eng Struct. 1998; 20(4): 384–389. doi:10.1016/S0141-0296(97)00018-7
  • Jaroslav M. Finite element linear and nonlinear, static and dynamic analysis of structural elements – an addendum – A bibliography (1996-1999). Eng Comput (Swansea). 2000; 17(3): 274–351. doi:10.1108/02644400010324893
  • Toklu YC. Nonlinear analysis of trusses through energy minimization. Comput Struct. 2004; 82(20): 1581–1589. doi:10.1016/j.compstruc.2004.05.008
  • Ligarò SS, Valvo PS. Large displacement analysis of elastic pyramidal trusses. Int J Solids Struct. 2006; 43(16): 4867–4887. doi:10.1016/j.ijsolstr.2005.06.100
  • Hrinda GA. Geometrically nonlinear static analysis of 3D trusses using the arc-length method. WIT Transactions on Modelling and Simulation. 2007; 46: 1–10.
  • Yang YB, Lin TJ, Leu LJ, Huang CW. Inelastic postbuckling response of steel trusses under thermal loadings. J Constr Steel Res. 2008; 64(12): 1394–1407. doi:10.1016/j.jcsr.2008.01.004
  • Greco M, Vicente CER. Analytical solutions for geometrically nonlinear trusses. Rem: Revista Escola de Minas. 2009; 62: 205–214. doi:10.1590/S0370-44672009000200012
  • Thai H-T, Kim S-E. Large deflection inelastic analysis of space trusses using generalized displacement control method. J Constr Steel Res. 2009; 65(10): 1987–1994. doi:10.1016/j.jcsr.2009.06.012
  • Xenidis H, Morfidis K, Papadopoulos P. Nonlinear analysis of thin shallow arches subject to snap-through using truss models. Struct Eng Mech. 2013; 45(4): 521–542. doi:10.12989/sem.2013.45.4.521
  • Malla RB, Nalluri BB. Dynamic nonlinear member failure propagation in truss structures. Struct Eng Mech. 2000; 9(2): 111–126. doi:10.12989/sem.2000.9.2.111
  • Torkamani MAM, Shieh J-H. Elastic Nonlinear Analysis of Plane Truss Bridges. Structures Congress. Las Vegas, Nevada, United States: ASCE, 2011.
  • Torkamani MAM, Shieh JH. Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures. Eng Struct. 2011; 33(12): 3516–3526. doi:10.1016/j.engstruct.2011.07.015
  • Tran HC, Lee J. Geometric and material nonlinear analysis of tensegrity structures. Acta Mech Sin. 2011; 27(6): 938–949. doi:10.1007/s10409-011-0520-2
  • Rezaiee-Pajand M, Sarafrazi SR, Rezaiee H. Efficiency of dynamic relaxation methods in nonlinear analysis of truss and frame structures. Comput Struct. 2012; 112: 295–310. doi:10.1016/j.compstruc.2012.08.007
  • Saffari H, Mirzai NM, Mansouri I, Bagheripour MH. Efficient numerical method in second-order inelastic analysis of space trusses. J Comput Civ Eng. 2013; 27(2): 129–138. doi:10.1061/(ASCE)CP.1943-5487.0000193
  • Shi H, Salim H, Shi Y, Wei F. Geometric and material nonlinear static and dynamic analysis of space truss structures. Mech Based Des Struct Mach. 2015; 43(1): 38–56. doi:10.1080/15397734.2014.925808
  • Liang Z, Qiang G, Yin L, Hongwu Z. An efficient finite element formulation for nonlinear analysis of clustered tensegrity. Eng Comput (Swansea). 2016; 33(1): 252–273. doi:10.1108/EC-08-2014-0168
  • Rezaiee-Pajand M, Mokhtari M, Masoodi AR. A novel cable element for nonlinear thermo-elastic analysis. Eng Struct. 2018; 167: 431–444. doi:10.1016/j.engstruct.2018.04.022
  • Masoodi AR, Arabi E. Geometrically nonlinear thermomechanical analysis of shell-like structures. J Therm Stresses. 2018; 41(1): 37–53. doi:10.1080/01495739.2017.1360166
  • Rezaiee-Pajand M, Rajabzadeh-Safaei N, Masoodi AR. An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams. Structures: Elsevier. 2020: 1035–1049. doi:10.1016/j.istruc.2020.08.038
  • Rezaiee-Pajand M, Masoodi AR. Hygro-thermo-elastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels. Mech Adv Mater Struct. 2022; 29(4): 594–612. doi:10.1080/15376494.2020.1780524
  • Mahaney J, Thornton EA. Self-shadowing effects on the thermal-structural response of orbiting trusses. J Spacecr Rockets. 1987; 24(4): 342–348. doi:10.2514/3.25922
  • Thornton EA, Paul DB. Thermal-structural analysis of large space structures-An assessment of recent advances. J Spacecr Rockets. 1985; 22(4): 385–393. doi:10.2514/3.25761
  • Ko WL. Solution accuracies of finite element reentry heat transfer and thermal stress analyses of space shuttle orbiter. Int J Numer Methods Eng. 1988; 25(2): 517–543. doi:10.1002/nme.1620250215
  • Lutz J, Allen D, Haisler W. Finite-element model for the thermoelastic analysis of large composite space structures. J Spacecr Rockets. 1987; 24(5): 430–436. doi:10.2514/3.25935
  • Givoli D, Rand O. Harmonic finite-element thermoelastic analysis of space frames and trusses. J Therm Stresses. 1993; 16(3): 233–248. doi:10.1080/01495739308946228
  • Brütting J, Desruelle J, Senatore G, Fivet C. Design of truss structures through reuse. Structures. 2019; 18: 128–137. doi:10.1016/j.istruc.2018.11.006
  • Tin-Loi F, Xia SH. Elastoplastic analysis of space trusses considering the effects of large displacements and softening. Mech Struct Mach. 1998; 26(4): 423–441. doi:10.1080/08905459808945503
  • Xia SH, Tin-Loi F. Large displacement elastoplastic analysis of space trusses as a mathematical programming problem. Int J Space Struct. 1998; 13(3): 127–136. doi:10.1177/026635119801300302
  • de Freitas JAT, Ribeiro ACBS. Large displacement elastoplastic analysis of space trusses. Comput Struct. 1992; 44(5): 1007–1016. doi:10.1016/0045-7949(92)90323-R
  • Rezaiee-Pajand M, Arabi E, Masoodi AR. A triangular shell element for geometrically nonlinear analysis. Acta Mech. 2018; 229(1): 323–342. doi:10.1007/s00707-017-1971-8
  • Rezaiee-Pajand M, Masoodi AR. Shell instability analysis by using mixed interpolation. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2019; 41(10): 1–18. doi:10.1007/s40430-019-1937-y
  • Rezaiee-Pajand M, Masoodi AR. Analyzing FG shells with large deformations and finite rotations. World J. Eng. 2019; 16(5): 636–647. doi:10.1108/WJE-10-2018-0357
  • Rezaiee-Pajand M, Rajabzadeh-Safaei N, Masoodi AR. Linear and geometrically nonlinear analysis of plane structures by using a new locking free triangular element. Eng Struct. 2019; 196: 109312. doi:10.1016/j.engstruct.2019.109312
  • Rezaiee-Pajand M, Masoodi AR, Arabi E. A 6-parameter triangular flat shell element for nonlinear analysis. European Journal of Computational Mechanics. 2019: 237–268. doi:10.13052/ejcm1958-5829.2835
  • Rezaiee-Pajand M, Masoodi AR, Arabi E. Improved shell element for geometrically non-linear analysis of thin-walled structures. Proc Inst Civ Eng: Struct Build. 2022; 175(4): 347–356. doi:10.1680/jstbu.19.00130
  • Meek JL, Hoon Swee T. Geometrically nonlinear analysis of space frames by an incremental iterative technique. Comput Methods Appl Mech Eng. 1984; 47(3): 261–282. doi:10.1016/0045-7825(84)90079-3
  • Yang YB, Leu LJ, Yang JP. Key considerations in tracing the postbuckling response of structures with multi winding loops. Mech Adv Mater Struct. 2007; 14(3): 175–189. doi:10.1080/15376490600723578
  • Yang YB, Leu LJ. Constitutive laws and force recovery procedures in nonlinear analysis of trusses. Comput Methods Appl Mech Eng. 1991; 92(1): 121–131. doi:10.1016/0045-7825(91)90201-G
  • Toklu YC, Bekdas G, Temur R. Investigation of thermal effects on analyses of truss structures via metaheuristic approaches. 6th European Conference of Civil Engineering. Budapest, Hungary 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.