490
Views
0
CrossRef citations to date
0
Altmetric
Scientific Paper

Investigating Partial Factors for the Assessment of Existing Reinforced Concrete Bridges

, , , , ORCID Icon, , , , , , , , , & show all

References

  • JCSS. JCSS probabilistic model code (periodically updated online publication). Joint Committee on Structural Safety; 2001. www.jcss.byg.dtu.dk.
  • JCSS. Probabilistic assessment of existing structures (Diamantidis D editor). France: RILEM Publications S.A.R.L, 2001.
  • Cost Action 345. Procedure required for the assessment of highway structures - final report. European Cooperation in Science And Technology (COST); 2002.
  • fib MC2010. fib model code for concrete structures 2010. Berlin (Germany): Ernst & Sohn; 2010.
  • ISO 13822:2010. Bases for design of structures – Assessment of existing structures.
  • ISO 2394:2015. General principles on reliability for structures.
  • fib COM3 TG3.1. Partial factor methods for existing concrete structures (fib Bulletin 80). Fédération internationale du béton (fib), fib COM3 TG3.1; 2016.
  • Diamantidis D, Bazzuro P. Safety acceptance criteria for existing structures. Special Workshop on Risk Acceptance and Risk Communication, Stanford University, Australia; 2007.
  • Steenbergen RDJM, Vrouwenvelder ACWM. Safety philosophy for existing structures and partial factors for traffic load on bridges. Heron. 2010;55(2):123–140.
  • Steenbergen R, Sýkora M, Diamantidis D, et al. Economic and human safety reliability levels for existing structures. Struct Concr. 2015;16(3):323–332.
  • JRC report of CEN/TC250/WG2. New European technical rules for the assessment and retrofitting of existing structures; 2015. ISBN 978-92-79-46023-4.
  • AS 5104. General principles on reliability for structures standard by Standards Australia; 2017.
  • CEN/TS 17440:2020. Assessment and retrofitting of existing structures.
  • prEN 1990-2:2021. Eurocode – Basis of assessment and retrofitting of existing structures: general rules and actions; 2021.
  • Matthews S. Fib model code 2020-a new development in structural codes. Struct Concr. 2017;18(5):651–652. doi:10.1002/suco.201770052
  • Matthews S, Bigaj-van Vliet A, Walraven J, et al. Fib model code 2020: towards a general code for both new and existing concrete structures. Struct Concr. 2018;19(4):969–979. doi:10.1002/suco.201700198
  • Coronelli D, Walraven J, Zandi K, Matthews S. Fib model code 2020 - structural models for existing concrete structures. In: Foster S, Gilbert RI, Mendis P, Al-Mahaidi R, Millar D, editors. fib 2018 - Proceedings for the 2018 fib congress: better, smarter, stronger. Melbourne, Australia: Federation Internationale du Beton (fib), 2019; p. 3019–3040.
  • Ueda T. Intervention to allow integration of existing structures with new structures in fib MC2020. In: Derkowski W, Krajewski P, Gwozdziewicz P, Pantak M, Hojdys L, editors. Proceedings of fib Symposium 2019: concrete - innovations in materials, design and structures. Krakow, Poland: International Federation for Structural Concrete, 2019; p. 1643–1650.
  • Sykora M, Botte W, Caspeele R, et al. Probabilistic models for resistance variables in fib model code 2020 for design and assessment (accepted for publication). Proceedings of International Probabilistic Workshop IPW 2022, Stellenbosch, South Africa, 8–9 September 2022; p. 14.
  • SIA 269. Grundlagen der Erhaltung von Tragwerken. Zurich (Switzerland): Schweizerischer Ingenieur- und Architekten Verein; 2011.
  • Holicky M, Sykora M. Reliability approaches affecting the sustainability of concrete structures. Sustainability. 2021;13(5):1–14.
  • Enevoldsen I. Experience with probabilistic-based assessment of bridges. Struct Eng Int. 2001;11(4):251–260. doi:10.2749/101686601780346814
  • Cremona C. Structural performance: probability-based assessment. 2012. doi:10.1002/9781118601174
  • Cremona C, Poulin B. Standard and advanced practices in the assessment of existing bridges. Struct Infrastruct Eng. 2017;13(4):428–439. doi:10.1080/15732479.2016.1164731
  • O’Connor A, Pedersen C, Roldsgaard JH. Probability based assessment of motorway bridges in Denmark. IABSE Conference 2018; 2018.
  • Boros V. Reassessment of the partial safety factor for self weight of existing bridges. In: International Probabilistic Workshop 2019. 11–13 September, Edinburgh, UK, 2019. pp. 75–80.
  • Skokandić D, Mandić Ivanković A. Value of additional traffic data in the context of bridge service-life management. Struct Infrastruct Eng. 2022;18:456–475. doi:10.1080/15732479.2020.1857795
  • Nowak AS, Collins KR. Reliability of structures. Boca Raton: CRC Press, 2012.
  • Melchers RE, Beck AT. Structural reliability analysis and prediction. Chichester: John Wiley & Sons, 2018.
  • Boros V, Lenner R, O’Connor A, et al. Traffic loads for the assessment of existing bridges. IABSE Congress Ghent 2021; 2021.
  • Orcesi A, Boros V, Kušter Marić M, et al. Bridge case studies on the calibration of partial safety factors for the assessment of existing structures. 18th International Probabilistic Workshop, May 12 to 14, Guimarães; 2021.
  • EN 1990:2002. Eurocode - basis of structural design; 2002.
  • Šavor Z, Šavor Novak M. Procedures for reliability assessment of existing bridges. Gradevinar. 2015;67(6):557–572.
  • Sykora M, Diamantidis D, Holicky M, et al. Target reliability for existing structures considering economic and societal aspects. Struct Infrastruct Eng. 2017;13(1):181–194.
  • ÖNORM. Austrian Standard: ÖNORM B 4008-2. Assessment of load capacity of existing structures – part 2: bridge construction, Vienna, Austria; 2019.
  • prEN 1992-1-1:2021. Eurocode 2: design of concrete structures - part 1-1: general rules – rules for buildings, bridges and civil engineering structures; 2021.
  • Muttoni A. Background document to 4.3.3 and annex A, partial safety factors for materials, cEN/ TC250/ SC2/ WG1/ TG6 (report EPFL-IBETON 16-06-R11). EPFL Ecole Polytechnique Fédérale de Lausanne, Lausanne; 2021.
  • Moccia F, Yu Q, Fernández Ruiz M, et al. Concrete compressive strength: from material characterization to a structural value. Struct Concr. 2021;22(S1):E634–E654. doi:10.1002/suco.202000211
  • Bairán J-M, Casas JR. Safety factor calibration for a new model of shear strength of reinforced concrete building beams and slabs. Eng Struct. 2018;172:293–303. doi:10.1016/j.engstruct.2018.06.033
  • Blomfors M, Larsson Ivanov O, Honfí D, et al. Partial safety factors for the anchorage capacity of corroded reinforcement bars in concrete. Eng Struct. 2019;181:579–588. doi:10.1016/j.engstruct.2018.12.011
  • EN 1992-1-1:2004. Eurocode 2: design of concrete structures - Part 1-1: general rules and rules for buildings; 2004.
  • ECP. Eurocode 2 commentary. Brussels (Belgium): European Concrete Platform ASBL; 2017.
  • Cervenka V, Cervenka J, Kadlec L. Model uncertainties in numerical simulations of reinforced concrete structures. Struct Concr. 2018;19:2004–2016. doi:10.1002/suco.201700287
  • Engen M, Hendriks MAN, Monti G, et al. Treatment of modelling uncertainty of NLFEA in fib model code 2020. Struct Concr. 2021;22:3202–3212. doi:10.1002/suco.202100420
  • Gino D, Castaldo P, Giordano L, et al. Model uncertainty in non-linear numerical analyses of slender reinforced concrete members. Struct Concr. 2021;22(2):845–870. doi:10.1002/suco.202000600
  • O’Brien EJ, Enright B. Modeling same-direction two-lane traffic for bridge loading. Structural Safety. 2011;33(4-5):296–304. doi:10.1016/j.strusafe.2011.04.004
  • Caprani CC. Probabilistic analysis of highway bridge traffic loading. University College of Dublin; 2005.
  • Van der Spuy PF, Lenner R. Developing a new bridge live load model for South Africa. In: Powers N, Frangopol D, Al-Mahaidi R, Caprani C, editors. Proceedings of the ninth international conference on bridge maintenance, safety and management (IABMAS). Melbourne: Taylor & Francis, 2018; p. 1405–1410.
  • Van der Spuy PF, Lenner R. Towards a new bridge live load model for South Africa. Struct Eng Int. 2019;29(2):292–298.
  • Van der Spuy PF. Derivation of a traffic load model for the structural desig nof highway bridges in South Africa. [PhD thesis]. Stellenbosch University; 2020.
  • Pérez Sifre S. Site specific traffic load factor approach for the assessment of existing bridges. [Ph.D. thesis]. Stellenbosch University; 2020.
  • Meinen NE, Steenbergen RDJM. Reliability levels obtained by Eurocode partial factor design - a discussion on current and future reliability levels. Heron. 2018;63(3):243–301.
  • JCSS. JCSS Comment on draft prEN1990:2017, Reliability Requirements in Annex C. February 2018; 2018, p. 4.
  • EN 13791:2019. Assessment of in-situ compressive strength in structures and pre-cast concrete components; 2019.
  • Haavisto J, Husso A, Laaksonen A. Compressive strength of core specimens drilled from concrete test cylinders. Struct Concr. 2021;22(S1):E683–E695.
  • Bartlett FM. Canadian standards association standard A23.3-04 resistance factor for concrete in compression. Can J Civ Eng. 2007;34:1029–1037.
  • Foster SJ, Stewart MG, Sirivivatnanon V, et al. A re-evaluation of the safety and reliability indices for reinforced concrete structures designed to AS3600. UNICIV Report No. R-464, UNSW Sydney; 2015.
  • Foster SJ, Stewart MG, Loo M, et al. Calibration of Australian Standard AS3600 Concrete Structures: part I statistical analysis of material properties and model error. Aust J Struct Eng. 2016;17:242–253.
  • Ellingwood B, Galambos TV, MacGregor JG, et al. Development of a Probability Based Load Criterion for American National Standard A58. National Bureau of Standards Special Publication. Vol. 577. Washington, DC, U.S. Government Printing Office; 1980.
  • Gulvanessian H, Calgaro J-A, Holický M. Designers’ guide to eurocode: basis of structural design: EN 1990. London: Thomas Telford Publishing, 2002.
  • Beeby A, Jackson P. Partial safety factor for reinforcement. Structures. 2016;5:101–111.
  • CARES. Results of data collected during the period March 2005 to September 2006, BS 4449 Grade B500 reinforcement. UK Certification Authority for Reinforcing Steels, 2008. [visited 29.10.2019]. https://www.ukcares.com/information.
  • König G, Hosser D. The simplified level II method and its application on the derivation of safety elements for level I. CEB Bulletin no 147. Lausanne: International Federation for Structural Concrete; 1982.
  • Ana Mandić Ivanković, Dominik Skokandić, Aleš Žnidarič, Maja Kreslin. Bridge performance indicators based on traffic load monitoring. Struct and Infrastruct Eng. 2019;15(7):899–911. doi:10.1080/15732479.2017.1415941

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.