94
Views
0
CrossRef citations to date
0
Altmetric
Scientific Paper

Reliability of Rack Columns Designed by the Direct Strength Method

, (Prof.) & (Assoc. Prof.)

References

  • AISI. AISI S100-16 (R2020): North American Specification for the Design of Cold-Formed Steel Structural Members. Washington (DC): American Iron And Steel Institute, 2020.
  • Moen CD. Direct Strength Design of Cold-Formed Steel Members with Perforations. Baltimore (MD): Johns Hopkins University, 2008.
  • Casafont M, Pastor MM, Roure F, et al. Design of steel storage rack columns via the direct strength method. J Struct Eng. 2013; 139(5): 669–679. doi:10.1061/(ASCE)ST.1943-541X.0000620
  • El-Kadi B, Kiymaz G. Behavior and design of perforated steel storage rack columns under axial compression. Steel Compos Struct. 2015; 18(5): 1259–1277. doi:10.12989/scs.2015.18.5.1259
  • Liu S-W, Peköz T, Gao WL, et al. Frame analysis and design of industrial rack structures with perforated cold-formed steel columns. Thin-Walled Struct. 2021; 163.
  • RMI. ANSI MH16.1: Design, Testing, and Utilization of Industrial Steel Storage Racks. Charlotte (NC): Rack Manufacturers Institute, 2021.
  • AISI. AISI S100-16(R2020)/S3-22: Supplement 3 to the 2016 Edition (Reaffirmed 2020) of the North American Specification for the Design of Cold-Formed Steel Structural Mem. Washington (DC): American Iron And Steel Institute, 2022.
  • Nowak AS, Collins KR. Reliability of Structures. Boston (MA): McGraw-Hill, 2000.
  • Ganesan K, Moen CD. LRFD resistance factor for cold-formed steel compression members. J Constr Steel Res. 2012; 72: 261–266. doi:10.1016/j.jcsr.2012.01.003
  • Freitas MSdR, Brandão ALR, Freitas AMS. Resistance factor calibration for cold-formed steel compression members. REM Rev Esc Minas. 2013; 66(2): 233–238. doi:10.1590/S0370-44672013000200015
  • Jardim RLF, Freitas MSdR, Brandão ALR. Resistance factor calibration for perforated cold-formed steel compression members. Rev Ing Construcción. 2022; 37(1): 35–46.
  • Schafer BW, Ádany S. Bucking analysis of cold-formed steel members using CUFSM: conventional and constrained finite strip methods. DepartEighteen International Seciality Conference on Cold-Formed Steel Structures: Orlando, FL; 2006.
  • Souza FTd. Análise teórico-experimental da estabilidade de colunas perfuradas em perfis de aço formados a frio de seções tipo rack [Theoretical-experimental analysis of the stability of perforated cold-formed steel rack columns]. PhD thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil; 2013.
  • Faria VdO, Freitas AMS, Souza FTd. Análise de elementos estruturais em perfis formados a frio com perfurações - Sistemas “racks”. In XXXIV CILAMCE, Associação Brasileira de Métodos Computacionais em Engenharia: Pirenópolis, Brazil, 2013.
  • Faria VdO, Souza FTd, Miranda SAd, et al. Análise de perfis formados a frio com perfurações sob compressão centrada. Rev da Estrut Aço. 2015; 4(3): 163–180. doi:10.17648/aco-2238-9377-4-3-1
  • Silva GGd. Análise teórico-experimental de colunas curtas perfuradas [Theoretical-experimental analysis of perforated columns]. Master thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil; 2011.
  • Neiva LHdA, Sarmanho AMC, Faria VdO, et al. Numerical and experimental analysis of perforated rack members under compression. Thin-Walled Struct. 2018; 130: 176–193. doi:10.1016/j.tws.2018.05.024
  • Gilbert BP, Rasmussen KJR. Experimental test on steel storage rack components - Research Report No R899; The University of Sydney: Sydney, Australia; 2009.
  • Koen D. Structural capacity of light gauge steel storage rack uprights. Master thesis, The University of Sydney, Sydney, Australia; 2008.
  • Trouncer AN, Rasmussen KJR. Flexural-torsional buckling of ultra light-gauge steel storage rack uprights. Thin-Walled Struct. 2014; 81: 159–174. doi:10.1016/j.tws.2013.10.001
  • Ellingwood B, Galambos TV, MacGregor JG, et al. Development of a probability based load criterion for American National Standard A58. NBS special publication 577; U.S. Department of Commerce: Washington, DC; 1980.
  • Cardoso FMHdS, Zhang H, Rasmussen KJR. System reliability-based criteria for the design of steel storage rack frames by advanced analysis: part II—reliability analysis and design applications. Thin-Walled Struct. 2019; 141: 725–739. doi:10.1016/j.tws.2019.03.021
  • NRCC. National Building Code of Canada. Ottawa, Canada: National Research Council of Canada, 2020.
  • Hasofer, AM, Lind, NC. Exact and invariant first order reliability format. J. Eng. Mech. Division 1974, 100, 111–121. doi:10.1061/jmcea3.0001848
  • Rackwitz, R.; Fiessler, B. Structural reliability under combined random load sequences. Comput. Struct. 1978, 9(5), 489–494. doi:10.1016/0045-7949(78)90046-9
  • Low BK, Tang WH. Reliability analysis using object-oriented constrained optimization. Struct Saf. 2004; 26(1): 69–89. doi:10.1016/S0167-4730(03)00023-7
  • Microsoft Corporation. Microsoft Excel 2016; 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.