105
Views
0
CrossRef citations to date
0
Altmetric
Articles

Watson-type 3F2-series and summation formulae involving generalized harmonic numbers

, &
Pages 1444-1472 | Received 12 Jun 2017, Accepted 07 Jan 2018, Published online: 16 Aug 2018

References

  • S. Ahlgren and K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000), pp. 187–212.
  • S. Ahlgren, S.B. Ekhad, K. Ono, and D. Zeilberger, A binomial coefficient identity associated to a conjecture of Beukers, Electron. J. Comb. 5 (1998), p. #N10.
  • G.E. Andrews and K. Uchimura, Identities in combinatorics IV: Differentiation and harmonic numbers, Util. Math. 28 (1985), pp. 265–269.
  • G.E. Andrews, R. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.
  • W.N. Bailey, On the sum of a terminating 3F2, Quart. J. Math. Oxford 4(2) (1953), pp. 237–240. doi: 10.1093/qmath/4.1.237
  • X. Chen and W. Chu, The Gauss 2F1(1)-summation theorem and harmonic number identities, Integral Transforms Spec. Funct. 20 (2009), pp. 925–935. doi: 10.1080/10652460903016166
  • X. Chen and W. Chu, Dixon's 3F2(1)-series and identities involving harmonic numbers and the Riemann zeta function, Discrete Math. 310 (2010), pp. 83–91. doi: 10.1016/j.disc.2009.07.029
  • Y. Chen, Q. Hou, and H. Jin, The Abel-Zeilberger algorithm, Electron. J. Comb. 18 (2011), p. #N17.
  • G.-S. Cheon and M.E.A. EI-Mikkawy, Generalized harmonic numbers with Riordan arrays, J. Number Theory 128 (2008), pp. 413–425. doi: 10.1016/j.jnt.2007.08.011
  • J. Choi, Certain summation formulas involving harmonic numbers and generalized harmonic numbers, Appl. Math. Comput. 218 (2011), pp. 734–740.
  • J. Choi and H.M. Srivastava, Some summation formulas involving harmonic numbers and generalized harmonic numbers, Math. Comput. Model. 54 (2011), pp. 2220–2234. doi: 10.1016/j.mcm.2011.05.032
  • W. Chu, Hypergeometric series and the Riemann zeta function, Acta Arith. 82 (1997), pp. 103–118. doi: 10.4064/aa-82-2-103-118
  • W. Chu, A binomial coefficient identity associated with Beukers' conjecture on Apéry numbers, Electron. J. Comb. 11 (2004), p. #N15.
  • W. Chu, Hypergeometric series identities and Hermite-Padé approximations to the logarithm function, J. Approx. Theory 137 (2005), pp. 42–56. doi: 10.1016/j.jat.2005.07.008
  • W. Chu, Hypergeometric approach to Weideman's conjecture, Arch. Math. 87 (2006), pp. 400–406. doi: 10.1007/s00013-006-1773-z
  • W. Chu and L. De Donno, Hypergeometric series and harmonic number identities, Adv. Appl. Math. 34 (2005), pp. 123–137. doi: 10.1016/j.aam.2004.05.003
  • W. Chu and A.M. Fu, Dougall-Dixon formula and harmonic number identities, Ramanujan J. 18 (2009), pp. 11–31. doi: 10.1007/s11139-007-9044-6
  • F. Chyzak, An extension of Zeilberger's fast algorithm to general holonomic functions, Discrete Math. 217 (2000), pp. 115–134. doi: 10.1016/S0012-365X(99)00259-9
  • G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed., Cambridge University Press, Cambridge, 2004.
  • R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Company, Amsterdam, 1994.
  • C. Krattenthaler and T. Rivoal, Hypergéométrie et fonction zêta de Riemann [Hypergeometry and Riemann Zeta functions], Memoirs of the American Mathematical Society, Vol. 186 (875), American Mathematical Society, Providence, RI, 2007.
  • M.J. Kronenburg, On two types of harmonic number identities. arXiv:1202.3981v2 [math.NT], 2012.
  • H. Liu and W. Wang, Harmonic number identities via hypergeometric series and Bell polynomials, Integral Transforms Spec. Funct. 23 (2012), pp. 49–68. doi: 10.1080/10652469.2011.553718
  • P. Paule and C. Schneider, Computer proofs of a new family of harmonic number identities, Adv. Appl. Math. 31 (2003), pp. 359–378. doi: 10.1016/S0196-8858(03)00016-2
  • C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin. 56 (2006), pp. B56b.
  • X. Si, C. Xu, and M. Zhang, Quadratic and cubic harmonic number sums, J. Math. Anal. Appl. 447 (2017), pp. 419–434. doi: 10.1016/j.jmaa.2016.10.026
  • A. Sofo, Sums of derivatives of binomial coefficients, Adv. Appl. Math. 42 (2009), pp. 123–134. doi: 10.1016/j.aam.2008.07.001
  • A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory 154 (2015), pp. 144–159. doi: 10.1016/j.jnt.2015.02.013
  • A. Sofo and H.M. Srivastava, Identities for the harmonic numbers and binomial coefficients, Ramanujan J. 25 (2011), pp. 93–113. doi: 10.1007/s11139-010-9228-3
  • Z. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), pp. 415–428. doi: 10.1090/S0002-9939-2011-10925-0
  • Z. Sun and L. Zhao, Arithmetic theory of harmonic numbers (II), Colloq. Math. 130 (2013), pp. 67–78. doi: 10.4064/cm130-1-7
  • W. Wang, Riordan arrays and harmonic number identities, Comput. Math. Appl. 60 (2010), pp. 1494–1509. doi: 10.1016/j.camwa.2010.06.031
  • W. Wang and C. Jia, Harmonic number identities via the Newton-Andrews method, Ramanujan J. 35 (2014), pp. 263–285. doi: 10.1007/s11139-013-9511-1
  • J. Wang and C. Wei, Derivative operator and summation formulae involving generalized harmonic numbers, J. Math. Anal. Appl. 434 (2016), pp. 315–341. doi: 10.1016/j.jmaa.2015.09.018
  • C. Wei and D. Gong, The derivative operator and harmonic number identities, Ramanujan J. 34 (2014), pp. 361–371. doi: 10.1007/s11139-013-9510-2
  • C. Wei and X. Wang, Summation formulas involving generalized harmonic numbers, J. Differ. Equ. App. 22 (2016), pp. 1554–1567. doi: 10.1080/10236198.2016.1216112
  • C. Wei and X. Wang, A Saalschütz-type identity and summation formulae involving generalized harmonic numbers, J. Math. Anal. Appl. 449 (2017), pp. 1036–1052. doi: 10.1016/j.jmaa.2016.12.059
  • C. Wei, D. Gong, and J. Li, Summation formulae for q-Watson type 4φ3-series, Discrete Math. 313 (2013), pp. 1589–1593. doi: 10.1016/j.disc.2013.04.003
  • C. Wei, D. Gong, and Q. Wang, Chu-Vandermonde convolution and harmonic number identities, Integral Transforms Spec. Funct. 24 (2013), pp. 324–330. doi: 10.1080/10652469.2012.689762
  • C. Wei, D. Gong, and Q. Yan, Telescoping method, derivative operators and harmonic number identities, Integral Transforms Spec. Funct. 25 (2014), pp. 203–214. doi: 10.1080/10652469.2013.838757
  • Q. Yan, C. Wei, and X. Fan, q-Generalization of Mortenson's identities and further identities, Ramanujan J. 35 (2014), pp. 131–139. doi: 10.1007/s11139-013-9526-7
  • D. Zheng, Further summation formulae related to generalized harmonic numbers, J. Math. Anal. Appl. 335 (2007), pp. 692–706. doi: 10.1016/j.jmaa.2007.02.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.