606
Views
15
CrossRef citations to date
0
Altmetric
Articles

Weakly contractive iterated function systems and beyond: a manual

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1114-1173 | Received 01 Feb 2019, Accepted 17 Apr 2020, Published online: 06 May 2020

References

  • R.R. Akhmerov, M.I. Kamenskiĭ, A.S. Potapov, A.E. Rodkina and B.N. Sadovskiĭ, Measures of Noncompactness and Condensing Operators, Birkhäuser Verlag, Basel, 1992.
  • E. Akin, The General Topology of Dynamical Systems, American Mathematical Society, Providence, RI, 1993.
  • J. Andres and J. Fišer, Metric and topological multivalued fractals, Int. J. Bifurcat. Chaos 14(4) (2004), pp. 1277–1289.
  • J. Andres, J. Fišer, G. Gabor and K. Leśniak, Multivalued fractals, Chaos Solitons Fract.24(3) (2005), pp. 665–700.
  • A. Arbieto, A. Junqueira and B. Santiago, On weakly hyperbolic iterated function systems, Bull. Braz. Math. Soc. (N.S) 48 (2017), pp. 111–140.
  • L. Arnold, Random Dynamical Systems. 2nd Printing, Springer-Verlag, Berlin, 2003.
  • J.-P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984.
  • R. Balka and A. Máthé, Generalized Hausdorff measure for generic compact sets, Ann. Acad. Sci. Fenn. Math. 38(2) (2013), pp. 797–804.
  • T. Banakh, W. Kubiś, M. Nowak, N. Novosad and F. Strobin, Contractive function systems, their attractors and metrization, Topol. Methods Nonlinear Anal. 46(2) (2015), pp. 1029–1066.
  • B. Bárány, M. Rams and K. Simon, Dimension theory of some non-Markovian repellers. Part I: A gentle introduction, preprint (2019). Available at arXiv: 1901.04035.
  • M.F. Barnsley and K. Leśniak, On the continuity of the Hutchinson operator, Symmetry (Basel)7(4) (2015), pp. 1831–1840.
  • M.F. Barnsley, K. Leśniak and M. Rypka, Chaos game for IFSs on topological spaces, J. Math. Anal. Appl. 435(2) (2016), pp. 1458–1466.
  • M.F. Barnsley, K. Leśniak and M. Rypka, Basic topological structure of fast basins, Fractals26(01) (2018), pp. 1850011/1–11.
  • M.F. Barnsley and A. Vince, Developments in fractal geometry, Bull. Math. Sci. 3(2) (2013), pp. 299–348.
  • P.G. Barrientos, F.H. Ghane, D. Malicet and A. Sarizadeh, On the chaos game of iterated function systems, Topol. Methods Nonlinear Anal. 49(1) (2017), pp. 105–132.
  • G.A. Beer, Topologies on Closed and Closed Convex Sets, Kluwer Academic Publishers, Dordrecht, 1993.
  • V. Berinde, Iterative Approximation of Fixed Points, Springer-Verlag, Berlin, 2007.
  • V. Bogachev, Measure Theory, Springer-Verlag, Berlin, 2007.
  • D. Buraczewski, E. Damek and T. Mikosch, Stochastic Models with Power-Law Tails, Springer-Verlag, Berlin, 2016.
  • C.S. Calude and L. Staiger, Generalisations of disjunctive sequences, MLQ Math Log. Quart. 51 (2005), pp. 120–128.
  • S. Carl and S. Heikkilä, Fixed Point Theory in Ordered Sets and Applications, Springer-Verlag, New York, 2011.
  • W.J. Charatonik and A. Dilks, On self-homeomorphic spaces, Topology Appl. 55(3) (1994), pp. 215–238.
  • D.N. Cheban, Global Attractors Of Non-autonomous Dynamical And Control Systems. 2nd ed., World Scientific, Hackensack, NJ, 2015.
  • M. Chowdhury and E. Tarafdar, Topological Methods for Set-Valued Nonlinear Analysis, World Scientific Publishing, Singapore, 2008.
  • I.D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, Acta Scientific Publishing House, Kharkov, 1999.
  • E. D'Aniello and T.H. Steele, Attractors for iterated function schemes on [0,1]N are exceptional, J. Math. Anal. Appl. 541(1) (2015), pp. 537–541.
  • E. D'Aniello and T.H. Steele, Attractors for classes of iterated function systems, European J. Math.5 (2019), pp. 116–137.
  • D. Dumitru, Attractors of topological iterated function system, Ann. Spiru Haret University: Math.-Inf. Ser. 8(2) (2012), pp. 11–16.
  • A. Edalat, Power domains and iterated function systems, Inf. Comput. 124(2) (1996), pp. 182–197.
  • G.A. Edgar, Integral, Probability, and Fractal Measures, Springer-Verlag, New York, 1998.
  • R. Engelking, General Topology. Revised and Completed Version, Heldermann Verlag, Berlin, 1989.
  • K. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.
  • A. Fan, Ergodicity, unidimensionality and multifractality of self-similar measures, Kyushu J. Math.50(2) (1996), pp. 541–574.
  • M. Fernández-Martínez and M.A. Sánchez-Granero, A new fractal dimension for curves based on fractal structures, Topology Appl. 203 (2016), pp. 108–124.
  • S.R. Foguel, Existence of invariant measures for Markov processes. II, Proc. Amer. Math. Soc. 17 (1966), pp. 387–389.
  • H. Furstenberg, Ergodic Theory and Fractal Geometry, American Mathematical Society CBMS, Providence RI, 2014.
  • G.S. Goodman, A probabilist looks at the chaos game, in Fractals in the Fundamental and Applied Sciences, North-Holland, 1991, pp. 159–168.
  • A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
  • G. Guzik, Asymptotic stability of discrete cocycles, J. Difference Equ. Appl. 21(11) (2015), pp. 1044–1057.
  • D.J. Hartfiel, Nonhomogeneous Matrix Products, World Scientific, River Edge, NJ, 2002.
  • M. Hata, On the structure of self-similar sets, Japan J. Appl. Math. 2 (1985), pp. 381–414.
  • M. Hille, Remarks on limit sets of infinite iterated function systems, Monatsh. Math. 168(2) (2012), pp. 215–237.
  • M. Iosifescu, Iterated function systems. A critical survey, Math. Rep., Buchar. 11(61)(3) (2009), pp. 181–229.
  • J. Jachymski, An extension of A. Ostrovski's theorem on the round-off stability of iterations, Aequationes Math. 53 (1997), pp. 242–253.
  • J.R. Jachymski, On iterative equivalence of some classes of mappings, Ann. Math. Sil. 13 (1999), pp. 149–165.
  • J. Jachymski and I. Jóźwik, Nonlinear contractive conditions: a comparison and related problems, Banach Center Publ. 77 (2007), pp. 123–146.
  • A. Jadczyk, Quantum Fractals, World Scientific, Hackensack, NJ, 2014.
  • P. Jaros, Ł. Maślanka and F. Strobin, Algorithms generating images of attractors of generalized iterated function systems, Numer. Algorithms 73 (2016), pp. 477–499.
  • A. Käenmäki and H.W.J. Reeve, Multifractal analysis of Birkhoff averages for typical infinitely generated self-affine sets, J. Fractal Geom. 1(1) (2014), pp. 83–152.
  • A. Kameyama, Distances on topological self-similar sets and the kneading determinants, J. Math. Kyoto Univ. 40(4) (2000), pp. 601–672.
  • B. Kieninger, Iterated function systems on compact Hausdorff spaces, Ph.D. diss., University of Augsburg, Shaker-Verlag, Aachen, 2002.
  • V.A. Kleptsyn and M.B. Nalskii, Contraction of orbits in random dynamical systems on the circle, Funct. Anal. Appl. 38(4) (2004), pp. 267–282.
  • O. Knill, Probability Theory and Stochastic Processes with Applications, Overseas Press, New Delhi, 2009.
  • A.N. Kolmogorov and S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover, Mineola, NY, 1999.
  • K. Kuhlmann, The structure of spaces of R-places of rational function fields over real closed fields, Rocky Mt. J. Math. 46(2) (2016), pp. 533–557.
  • H. Kunze, D. La Torre and F. Mendivil, Fractal-Based Methods in Analysis, Springer-Verlag, New York, 2012.
  • A. Lasota and J. Myjak, Semifractals, Bull. Pol. Acad. Sci., Math. 44(1) (1996), pp. 5–21.
  • T. Leinster, A general theory of self-similarity, Adv. Math. 226(4) (2011), pp. 2935–3017.
  • K. Leśniak, Infinite iterated function systems: a multivalued approach, Bull. Pol. Acad. Sci. Math.52(1) (2004), pp. 1–8.
  • K. Leśniak, On the Lifshits constant for hyperspaces, Bull. Pol. Acad. Sci. Math. 55(2) (2007), pp. 155–160.
  • K. Leśniak, Invariant sets and Knaster-Tarski principle, Cent. Eur. J. Math. 10(6) (2012), pp. 2077–2087.
  • K. Leśniak, On discrete stochastic processes with disjunctive outcomes, Bull Aust. Math. Soc. 90 (2014), pp. 149–159.
  • K. Leśniak, Note on multifunctions condensing in the hyperspace, Fixed Point Theory 16(2) (2015), pp. 343–352.
  • K. Leśniak, Random iteration for infinite nonexpansive iterated function systems, Chaos 25 (2015), pp. 083117-1–5.
  • G. Mantica and R. Peirone, Attractors of iterated function systems with uncountably many maps and infinite sums of Cantor sets, J. Fractal Geom. 4(3) (2017), pp. 215–256.
  • T. Martyn, The chaos game revisited: Yet another, but a trivial proof of the algorithm's correctness, Appl. Math. Lett. 25(2) (2012), pp. 206–208.
  • P. Massopust, Interpolation and Approximation with Splines and Fractals, Oxford University Press, Oxford, 2010.
  • J. Matkowski and J. Miś, Examples and remarks to a fixed point theorem, Facta Univ. Ser. Math. Inform. No. 1 (1986), pp. 53–56.
  • J. Matkowski and R. Wȩgrzyk, On equivalence of some fixed point theorems for selfmappings of metrically convex space, Boll. Un. Mat. Ital. A 15(5) (1978), pp. 359–369.
  • R.D. Mauldin and M. Urbański, Graph Directed Markov Systems, Cambridge University Press, Cambridge, 2003.
  • I. McFarlane and S.G. Hoggar, Optimal drivers for the ‘random’ iteration algorithm, Comput. J. 37(7) (1994), pp. 629–640.
  • R. Miculescu and A. Mihail, Generalized IFSs on noncompact spaces, Fixed Point Theory Appl. (2010), Article ID 584215, 11 pp.
  • R. Miculescu and A. Mihail, On a question of A. Kameyama concerning self-similar metrics, J. Math. Anal. Appl. 422(1) (2015), pp. 265–271.
  • R. Miculescu and A. Mihail, A sufficient condition for a finite family of continuous functions to be transformed into ϕ-contractions, Ann. Acad. Sci. Fenn., Math. 41 (2016), pp. 51–65.
  • A. Mihail, A topological version of iterated function systems, An Ştiinţ. Univ. Al. I. Cuza, Iaşi, (S.N.), Matematica 58 (2012), pp. 105–120.
  • A. Muchnik, A. Semenov and M. Ushakov, Almost periodic sequences, Theoret. Comput. Sci. 304(1–3) (2003), pp. 1–33.
  • D. Mumford, C. Series and D. Wright, Indra's Pearls, Cambridge University Press, New York, 2002.
  • J. Myjak, Some typical properies of dimensions of sets and measures, Abstr. Appl. Anal. 3 (2005), pp. 329–333.
  • J. Myjak and T. Szarek, Attractors of iterated function systems and Markov operators, Abstr. Appl. Anal. 8 (2003), pp. 479–502.
  • M. Nowak and M. Fernández-Martinez, Counterexamples for IFS-attractors, Chaos Solitons Fract.89 (2016), pp. 316–321.
  • E.A. Ok, Fixed set theory for closed correspondences with applications to self-similarity and games, Nonlinear Anal., Theory Methods Appl. Ser. A 56(3) (2004), pp. 309–330.
  • K. Okamura, Self-similar measures for iterated function systems driven by weak contractions, Proc. Japan Acad. Ser. A Math. Sci. 94(4) (2018), pp. 31–35.
  • L. Olsen and N. Snigireva, Multifractal spectra of in-homogeneous self-similar measures, Indiana Univ. Math. J. 57 (2008), pp. 1789–1844.
  • I.A. Rus and A. Petruşel, G. Petruşel, Fixed Point Theory, Cluj University Press, Cluj-Napoca, 2008.
  • M. Samuel and A.V. Tetenov, On attractors of iterated function systems in uniform spaces, Sib. Élektron. Mat. Izv. 14 (2017), pp. 151–155.
  • M.J. Sanders, Non-attractors of iterated function systems, Texas Project NexT e-Journal 1 (2003), pp. 1–9.
  • G.R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.
  • A.G. Sivak, On the structure of transitive ω-limit sets for continuous maps, Qual. Theory Dyn. Syst.4(1) (2003), pp. 99–113.
  • A.V. Skorokhod, Topologically recurrent Markov chains: Ergodic properties, Theory Probab. Appl.31(4) (1987), pp. 563–571.
  • O. Stenflo, A survey of average contractive iterated function systems. J. Difference Equ. Appl. 18(8) (2012), pp. 1355–1380. https://doi.org/10.1080/10236198.2011.610793.
  • R.S. Strichartz, Differential Equations on Fractals, Princeton University Press, Princeton, NJ, 2006.
  • K.R. Wicks, Fractals and Hyperspaces, Springer-Verlag, Berlin, 1991.
  • A. Wiśnicki, On a nonstandard approach to invariant measures for Markov operators, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 64(2) (2010), pp. 73–80.
  • L. Zajíček, On σ-porous sets in abstract spaces, Abstr. Appl. Anal. 5 (2005), pp. 509–534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.