1,167
Views
4
CrossRef citations to date
0
Altmetric
Articles

Topological properties of Lorenz maps derived from unimodal maps

, &
Pages 1174-1191 | Received 17 Oct 2019, Accepted 17 Apr 2020, Published online: 29 May 2020

References

  • V.S. Afraimovich, V.V. Bykov, and L.P. Shil'nikov, On structurally unstable attracting limit sets of the Lorenz attractor type, Trudy Moskov. Mat. Obsch. 44 (1982), pp. 150–212.
  • J.-P. Allouche, M. Clarke, and N. Sidorov, Periodic unique beta-expansions: The Sharkovski ordering, Ergodic Theory Dynam. Syst. 29 (2009), pp. 1055–1074. doi: 10.1017/S0143385708000746
  • L. Alsedà, J. Llibre, M. Misiurewicz, and C. Tresser, Periods and entropy for Lorenz maps, Ann. Inst. Fourier 39 (1989), pp. 929–952. doi: 10.5802/aif.1195
  • L. Alvin, A. Anušić, H. Bruin, J. Činč, Folding points of unimodal inverse limit spaces. Nonlinearity 33(1) (2020), pp. 224–248. doi: 10.1088/1361-6544/ab4e31
  • A. Anušić, J. Činč, Accessible points of planar embeddings of tent inverse limit spaces. Diss. Math. 541 (2019), pp. 1–57.
  • M. Barge and J. Martin, Construction of global attractors, Proc. Am. Math. Soc. 110 (1990), pp. 523–525. doi: 10.1090/S0002-9939-1990-1023342-1
  • A. Blokh and L. Lyubich, Measurable dynamics of S-unimodal maps of the interval, Ann. Sci. Ec. Norm. Sup. 24 (1991), pp. 545–573. doi: 10.24033/asens.1636
  • P. Boyland, A. de Carvalho, and T. Hall, Inverse limits as attractors in parametrized families, Bull. Lond. Math. Soc. 45(5) (2013), pp. 1075–1085. doi: 10.1112/blms/bdt032
  • P. Boyland, A. de Carvalho, and T. Hall, Natural extensions of unimodal maps: Virtual sphere homeomorphisms and prime ends of basin boundaries, Geom. Topol. (2017). preprint arXiv:1704.06624, to appear in.
  • K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math. 160 (1999), pp. 219–246.
  • K. Brucks and H. Bruin, Topics from One-Dimensional Dynamics, London Mathematical Society Student Texts 62, Cambridge University Press, 2004.
  • H. Bruin, Invariant measures of interval maps, PhD-Thesis, University of Delft, 1994.
  • H. Bruin, Combinatorics of the kneading map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), pp. 1339–1349. doi: 10.1142/S0218127495001010
  • H. Bruin, Topological conditions for the existence of Cantor attractors, Trans. Amer. Math. Soc. 350 (1998), pp. 2229–2263. doi: 10.1090/S0002-9947-98-02109-6
  • H. Bruin, Homeomorphic restrictions of unimodal maps, Contemp. Math. 246 (1999), pp. 47–56. doi: 10.1090/conm/246/03773
  • H. Bruin, G. Keller, and M. St. Pierre, Adding machines and wild attractors, Ergod. Th. Dyn. Sys.17 (1997), pp. 1267–1287. doi: 10.1017/S0143385797086392
  • P. Collet and J.-P. Eckmann, Iterated Maps of the Interval As Dynamical Systems, Birkhäuser, Boston, 1980.
  • D. Cosper, Periodic orbits of piecewise monotone maps, PhD.-thesis, Purdue University, May 2018.
  • B. Derrida, A. Gervois, and Y. Pomeau, Iteration of endomorphisms on the real axis and representation of numbers, Ann. Inst. H. Poincaré Sect. A (N.S.) 29 (1978), pp. 305–356.
  • J. Guckenheimer, The strange, strange attractor, in The Hopf Bifurcation and its Applications, J. E. Marsden and M. McCracken, eds., (Springer Lecture Notes in Applied Mathematics), New York, 1976, pp. 368–381.
  • F. Hofbauer, The topological entropy of a transformation x↦ax(1−x), Monatsh. Math. 90 (1980), pp. 117–141. doi: 10.1007/BF01303262
  • F. Hofbauer, Periodic points for piecewise monotonic transformation, Ergod. Th. Dyn. Sys. 5 (1985), pp. 237-–256. doi: 10.1017/S014338570000287X
  • L. Jonker, Periodic orbits and kneading invariants, Proc. Lon. Math. Soc. 39(3) (1979), pp. 428–450. doi: 10.1112/plms/s3-39.3.428
  • S. Mazurkiewicz, Un théorème sur l'accessibilité des continus indécomposables, Fund. Math. 14 (1929), pp. 271–276. doi: 10.4064/fm-14-1-271-276
  • J. Milnor and W. Thurston, On iterated maps of the interval: I, II, Preprint 1977. Published in Lect. Notes in Math. 1342, Springer, Berlin New York, 1988, pp. 465–563.
  • A. Ostrowski, Bemerkungen zur Theorie der diophantischen Approximationen, Hamb. Abh. 1 (1921), pp. 77–98. doi: 10.1007/BF02940581
  • B. Raines, Inhomogeneities in non-hyperbolic one-dimensional invariant sets, Fund. Math. 182 (2004), pp. 241–268. doi: 10.4064/fm182-3-4
  • D. Rand, The topological classification of Lorenz attractors, Math. Proc. Camb. Phil. Soc. 83 (1978), pp. 451–460. doi: 10.1017/S0305004100054736
  • A. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, (Russian) Ukrain. Math. Zh. 16 (1964), pp. 61–71.
  • R.F. Williams, The structure of Lorenz attractors, Publ. Math. Inst. Hautes Études Sci. 50 (1979), pp. 73–99. doi: 10.1007/BF02684770