218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

On the exact and numerical complex travelling wave solution to the nonlinear Schrödinger equation

, &
Pages 195-206 | Received 12 Apr 2020, Accepted 20 Jan 2021, Published online: 09 Feb 2021

References

  • K.K. Ali, H.F. Ismael, B.A. Mahmood, and M.A. Yousif, MHD Casson fluid with heat transfer in a liquid film over unsteady stretching plate, Int. J. Adv. Appl. Sci 4(1) (2017), pp. 55–58.
  • K.K. Ali, R. Yilmazer, A. Yokus, and H. Bulut, Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov–Kuznetsov equation in plasma physics, Phys. A Stat. Mech. Appl. (2020), p. 124327.
  • E.O. Alt and A.M. Mukhamedzhanov, Asymptotic solution of the Schrödinger equation for three charged particles, Phys. Rev. A. 47(3) (1993), pp. 2004.
  • H.M. Baskonus, T.A. Sulaiman, and H. Bulut, Dark, bright and other optical solitons to the decoupled nonlinear Schrödinger equation arising in dual-core optical fibers, Opt. Quant. Electron. 50(4) (2018), p. 165.
  • H.M. Baskonus, T.A. Sulaiman, H. Bulut, and T. Aktürk, Investigations of dark, bright, combined dark-bright optical and other soliton solutions in the complex cubic nonlinear Schrödinger equation with δ-potential, Superlattices Microstruct. 115 (2018), pp. 19–29.
  • H. Bulut, T.A. Sulaiman, and B. Demirdag, Dynamics of soliton solutions in the chiral nonlinear Schrödinger equations, Nonlinear. Dyn. 91(3) (2018), pp. 1985–1991.
  • H. Bulut, T.A. Sulaiman, and H.M. Baskonus, Optical solitons to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity, Optik 163 (2018), pp. 49–55.
  • F. Cariello and M. Tabor, Painlevé expansions for nonintegrable evolution equations, Phys. D Nonlin. Phenom. 39(1) (1989), pp. 77–94.
  • S.H. Dong and J. Garcia-Ravelo, Exact solutions of the s-wave Schrödinger equation with Manning Rosen potential, Phys. Scripta 75(3) (2007), pp. 307.
  • P.G. Drazin and R.S. Jhonson, Solitons: An Introduction, Cambridge University Press, Cambridge, 1989.
  • H. Durur, Different types analytic solutions of the (1 + 1)-dimensional resonant nonlinear Schrödinger's equation using (G/G)-expansion method, Modern Phys. Lett. B 34(03) (2020),pp. 2050036.
  • S. Dyachenko, A.C. Newell, A. Pushkarev, and V.E. Zakharov, Optical turbulence: Weak turbulence, condensates and collapsing filaments in the nonlinear Schrödinger equation, Phys. D Nonlin. Phenom. 57(1–2) (1992), pp. 96–160.
  • K.B. Dysthe, Note on a modification to the nonlinear Schrödinger equation for application to deep water waves, Proc. R. Soc. Lond. A. Math. Phys. Sci. 369(1736) (1979), pp. 105–114.
  • S.M. El-Sayed and D. Kaya, A numerical solution and an exact explicit solution of the NLS equation, Appl. Math. Comput. 172(2) (2006), pp. 1315–1322.
  • A. Esen, T.A. Sulaiman, H. Bulut, and H.M. Baskonus, Optical solitons to the space-time fractional (1+1)-dimensional coupled nonlinear Schrödinger equation, Optik 167 (2018), pp. 150–156.
  • M. Eslami, Trial solution technique to chiral nonlinear Schrödinger's equation in (1+2)-dimensions, Nonlin. Dyn. 85(2) (2016), pp. 813–816.
  • M. Eslami and A. Neirameh, New exact solutions for higher order nonlinear Schrödinger equation in optical fibers, Opt. Quant. Electron. 50(1) (2018), p. 47.
  • X.B. Hu and W.X. Ma, Application of Hirota's bilinear formalism to the Toeplitz lattice-some special soliton-like solutions, Phys. Lett. A 293(3-4) (2002), pp. 161–165.
  • G. Imed and B. Abderrahmen, Numerical solution of the (2+1)-dimensional Boussinesq equation with initial condition by homotopy perturbation method, Appl. Math. Sci. 6(117–120) (2012), pp. 5993–6002.
  • H. Jafari, A. Kadem, D. Baleanu, and T. Yilmaz, Solutions of the Fractional Davey–Stewartson Equations with Variational Iteration Method, 2012.
  • Z. Kalogiratou, T. Monovasilis, and T.E. Simos, New modified Runge–Kutta–Nyström methods for the numerical integration of the Schrödinger equation, Comput. Math. Appl. 60(6) (2010), pp. 1639–1647.
  • V.I. Karpman and E.M. Krushkal, Modulated waves in nonlinear dispersive media, Soviet J. Exp. Theor. Phys. 28 (1969), p. 277.
  • S.A. Khuri, A complex tanh-function method applied to nonlinear equations of Schrödinger type, Chaos Solitons Fract. 20(5) (2004), pp. 1037–1040.
  • P.L. Knight and A. Miller, Optical Solitons: Theory and Experiment, Vol. 10, Cambridge University Press, 1992.
  • A. Kurt, O. Tasbozan, and H. Durur, The exact solutions of conformable fractional partial differential equations using new sub equation method, Fund. J. Math. Appl. 2(2) (2019), pp. 173–179.
  • Q. Liu and L. Chen, Time-space fractional model for complex cylindrical ion-acoustic waves in ultrarelativistic plasmas, Complexity 2020 (2020).
  • Q. Liu, R. Zhang, L. Yang, and J. Song, A new model equation for nonlinear Rossby waves and some of its solutions, Phys. Lett. A 383(6) (2019), pp. 514–525.
  • A. Nishino, Y. Umeno, and M. Wadati, Chiral nonlinear Schrödinger equation, Chaos Solitons Fract. 9(7) (1998), pp. 1063–1069.
  • T. Ogawa and Y. Tsutsumi, Blow-up of H1 solution for the nonlinear Schrödinger equation, J. Differ. Equ. 92(2) (1991), pp. 317–330.
  • D.E. Pelinovsky, V.V. Afanasjev, and Y.S. Kivshar, Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation, Phys. Rev. E. 53(2) (1996), pp. 1940.
  • V.N. Serkin and A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model, Phys. Rev. Lett. 85(21) (2000), p. 4502.
  • T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation, Acta. Appl. Math. 110(3) (2010), pp. 1331–1352.
  • P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J. 55(3) (1987), pp. 699–715.
  • M. Subas and H. Durur, On the stability of the solution in an optimal control problem for a Schrödinger equation, Appl. Math. Comput. 249 (2014), pp. 521–526.
  • T.A. Sulaiman, M. Yavuz, H. Bulut, and H.M. Baskonus, Investigation of the fractional coupled viscous Burgers' equation involving Mittag-Leffler kernel, Phys. A Stat. Mech. Appl. 527 (2019), pp. 121126.
  • C. Sulem and P.L. Sulem, The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, Vol. 139, Springer Science & Business Media, 2007.
  • T.R. Taha and M.I. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys. 55(2) (1984), pp. 203–230.
  • M. Yavuz and N. Ozdemir, Numerical inverse Laplace homotopy technique for fractional heat equations, Thermal Sci. 22(1) (2018), pp. 185–194.
  • M. Yavuz and A Yokus, Analytical and numerical approaches to nerve impulse model of fractional order, Numer. Methods Partial Differ. Equ.
  • A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, Int. J. Modern Phys. B 32(29) (2018), p. 1850365.
  • A. Yokus, Numerical solutions of time fractional Korteweg–de Vries equation and its stability analysis, Commun. Faculty Sci. Univ. Ankara Ser. A1 Math. Stat. 68(1) (2019), pp. 353–361.
  • A. Yokus, On the exact and numerical solutions to the FitzHugh–Nagumo equation, Int. J. Modern Phys. B (2020), p. 2050149.
  • A. Yokus and H. Bulut, On the numerical investigations to the Cahn–Allen equation by using finite difference method, Int. J. Opt. Control: Theories Appl. (IJOCTA) 9(1) (2018), pp. 18–23.
  • A. Yokus and D. Kaya, Comparison exact and numerical simulation of the traveling wave solution in nonlinear dynamics, Int. J. Modern Phys. B 34(29) (2020), p. 2050282.
  • J. Yu, S.H. Dong, and G.H. Sun, Series solutions of the Schrödinger equation with position-dependent mass for the Morse potential, Phys. Lett. A 322(5-6) (2004), pp. 290–297.
  • R. Zhang, Q. Liu, L. Yang, and J. Song, Nonlinear planetary-synoptic wave interaction under generalized beta effect and its solutions, Chaos Solitons Fractals 122 (2019), pp. 270–280.
  • R. Zhang, L. Yang, Q. Liu, and X. Yin, Dynamics of nonlinear Rossby waves in zonally varying flow with spatial-temporal varying topography, Appl. Math. Comput. 346 (2019), pp. 666–679.
  • Q. Zhu, Z. Zhou, and L. Wang, Exact solutions for a coupled discrete nonlinear Schrödinger system with a saturation nonlinearity, Appl. Math. Lett. 74 (2017), pp. 7–14.
  • Q. Zhu, Z. Zhou, and T. Luo, Orbital instability of standing waves for the Klein–Gordon–Schrödinger system with quadratic–cubic nonlinearity, J. Math. Anal. Appl. 456(2) (2017), pp. 1329–1346.
  • Q. Zhu, Z. Zhou, and L. Wang, Existence and stability of discrete solitons in nonlinear Schrödinger lattices with hard potentials, Phys. D Nonlin. Phenom. 403 (2020), p. 132326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.