186
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New approach for the chaotic dynamical systems involving Caputo-Prabhakar fractional derivative using Adams-Bashforth scheme

&
Pages 640-656 | Received 19 Jan 2020, Accepted 31 Aug 2021, Published online: 14 Sep 2021

References

  • K. Ait Touchent, Z. Hammouch, T. Mekkaoui, and F.B.M. Belgacem, Implementation and convergence analysis of homotopyperturbation coupled with sumudu transform to construct solutions oflocal-fractional PDEs, Fractal. Fract 2(3) (2018), pp. 22.
  • H. Alrabaiah, M. Arfan, K. Shah, I. Mahariq, and A. Ullah, A comparative study of spreading of novel corona virus disease by ussing fractional order modified SEIR model, Alex. Eng. J 1 (2021), pp. 573–585.
  • J. An, E. Van Hese, and M. Baes, Phase-space consistency of stellar dynamical models determined by separable augmented densities, Mon. Not. R. Astron. Soc 422(1) (2012), pp. 652–664.
  • A.T. Azar and S. Vaidyanathan, Advances in Chaos Theory and Intelligent Control, Springer, Berlin, Germany, 2016.
  • E. Balcl, I. Öztürk, and S. Kartal, Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative, Chaos. Solitons. Fractals 123 (2019), pp. 43–51.
  • C. Cattani, A review on harmonic wavelets and their fractional extension, J. Adv. Eng. Comput. 2(4) (2018), pp. 224–238.
  • C. Cattani and G. Pierro, On the fractal geometry of DNA by the binary image analysis, Bull. Math. Biol. 75 (2013), pp. 1544–1570.
  • C. Cattani, J.J. Rushchitsky, and S.V. Sinchilo, Physical constants for one type of nonlinearly elastic fibrous micro-and nanocomposites with hard and soft nonlinearities, Int. Appl. Mech 41(12) (2005), pp. 1368–1377.
  • M.H. Cherif, K. Belghaba, and D. Ziane, Homotopy perturbation method for solving the fractional Fisher's equation, Int. J. Anal. Appl. 10(1) (2016), pp. 9–16.
  • M. D'Ovidio and F. Polito, Fractional diffusion-telegraph equations and their associated stochastic solutions, preprint (2013). Available at ArXiv, pages e-prints 1307.1696. To appear in Theor. Probab. Appl.
  • J. Danane, K. Allali, and Z. Hammouch, Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos. Solitons. Fractals 136 (2020), pp. 109787.
  • M.H. Derakhshan, M.R. Ahmadi Darani, A. Ansari, and R. Khoshsiar Ghaziani, On asymptotic stability of Prabhakar fractional differential systems, Comput. Methods Differ. Equ. 4(4) (2016), pp. 276–284.
  • M.H. Derakhshan and A. Ansari, On Hyers-Ulam stability of fractional differential equations with Prabhakar derivatives, Anal. 38(1) (2018), pp. 37–46.
  • M.H. Derakhshan and A. Ansari, Fractional Sturm-Liouville problems for Weber fractional derivatives, Int. J. Comput. Math. 96(2) (2019), pp. 217–237.
  • M.H. Derakhshan and A. Ansari, Numerical approximation to Prabhakar fractional Sturm-Liouville problem, Comput. Appl. Math. 38(2) (2019), pp. 69.
  • M.H. Derakhshan, A. Ansari, and M.R. Ahmadi Darani, On asymptotic stability of Weber fractional differential systems, Comput. Methods Differ. Equ. 6(1) (2018), pp. 30–39.
  • B. Dumitru, D. Kai, S. Enrico, T. Juan, Fractional Calculus: Models and Numerical Methods, Vol. 3, 2nd ed. World Scientific, New York, 2012.
  • M. Faraz and G. Haller, The Maxey-Riley equation: existence, uniqueness and regularity of solutions, Nonlinear Anal. Real World Appl. 22 (2015), pp. 98–106.
  • W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus, and G. Yel, New numerical results for the time-fractional Phi-four equation using a novel analytical approach, Symmetry 12(3) (2020), pp. 478.
  • W. Gao, P. Veeresha, D.G. Prakasha, and H. Mehmet Baskonus, Novel dynamic structures of 2019-nCoV with nonlocal operator via powerful computational technique, Biol. 9(5) (2020), pp. 107.
  • W. Gao, P. Veeresha, D.G. Prakasha, H. Mehmet Baskonus, and G. Yel, A powerful approach for fractional Drinfeld-Sokolov-Wilson equation with Mittag-Leffler law, Alex. Eng. J. 58(4) (2019), pp. 1301–1311.
  • R. Garra, R. Gorenflo, F. Polito, and Ž. Tomovski, Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput. 242 (2014), pp. 576–589.
  • R. Garrappa, F. Mainardi, and M. Guido, Models of dielectric relaxation based on completely monotone functions, Fract. Calc. Appl. Anal. 19(5) (2016), pp. 1105–1160.
  • A. Giusti and I. Colombaro, Prabhakar-like fractional viscoelasticity, Commun. Nonlinear. Sci. Numer. Simul. 56 (2018), pp. 138–143.
  • R. Gorenflo, A.A. Kilbas, F. Mainardi, and S. Rogosin, Mittag-Leffler Functions, Theory. Appl Springer Monographs in Mathematics, Springer, Berlin, 2014.
  • K. Górska, A. Horzela, L. Bratek, K.A. Penson, and G. Dattoli, The probability density function for the Havriliak-Negami relaxation, preprint (2016). Available at arXiv:1611.06433.
  • M. Hamarsheh, A.I. Ismail, and Z. Odibat, An analytic solution for fractional order Riccati equations by using optimal homotopy asymptotic method, Appl. Math. Sci. 10(23) (2016), pp. 1131–1150.
  • T. Hou and H. Leng, Numerical analysis of a stabilized Crank-Nicolson/Adams-Bashforth finite difference scheme for Allen-Cahn equations, Appl. Math. Lett. 102 (2020), pp. 106150.
  • W. Hundsdorfer and J.G. Verwer, Numerical Solution of Time-dependent Advection-diffusion-reaction Equations, Vol. 33, Springer Science and Business Media, New York, 2013.
  • E. İlhan and İ.O. Kıymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlinear. Sci. 5(1) (2020), pp. 171–188.
  • Y. Kao, C. Gao, and D. Wang, Global exponential stability of reaction-diffusion hop-field neural network swith continuously distributed delays, Math. Appl. 21 (2008), pp. 457–462.
  • B. Karaagac, Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel, Chaos Solitons Fractal 128 (2019), pp. 234–241.
  • P. Karunakar and S. Chakraverty, Solutions of time-fractional third-and fifth-order Korteweg-de-Vries equations using homotopy perturbation transform method, Eng. Comput. 36(7) (2019), pp. 2309–2326.
  • R. Khalil, M.A. Horani, A. Yousef, and M. Sababheh, A new definition of fractional derivative, J. Comp. App. Math. 264 (2014), pp. 65–70.
  • A.A. Kilbas, M. Saigo, and R.K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral. Transform. Spec. Funct. 15(1) (2004), pp. 31–49.
  • S. Kumar, A. Kumar, and Z.M. Odibat, A nonlinear fractional model to describe the population dynamics of two interacting species, Math. Methods. Appl. Sci 40(11) (2017), pp. 4134–4148.
  • Y. Kuramoto, Chemical Oscillations Waves and Turbulence, Springer-Verlag, New York NY USA, 1984.
  • C. Li, A. Kumar, S. Kumar, and X.J. Yang, On the approximate solution of nonlinear time-fractional KdV equation via modified homotopy analysis Laplace transform method, J. Nonlinear Sci. Appl. 9 (2016), pp. 5463–5470.
  • A. Liemert, T. Sandev, and H. Kantz, Generalized Langevin equation with tempered memory kernel, Phys. A (Amsterdam) 466 (2017), pp. 356–369.
  • J. Lu, Global exponential stability and periodicity of reaction-diffusion delayed recurrent neural networks with Dirichlet boundary conditions, Chaos Solitons Fractal 35 (2008), pp. 116–125.
  • J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl. 34 (2008), pp. 753–760.
  • P. Miskinis, The Havriliak-Negami susceptibility as a nonlinear and nonlocal process, Phys. Scr. T136 (2009), pp. 014019.
  • E. Oliveira and J. Sousa, Hyers-Ulam stability for a class of fractional integro-differential equations, Results Math. 73 (2018), pp. 1–16.
  • K.M. Owolabi and A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo-Fabrizio derivative, Chaos Solitons Fractals 105 (2017), pp. 111–119.
  • K.M. Owolabi and A. Atangana, On the formulation of Adams-Bashforth scheme with Atangana-Baleanu-Caputo fractional derivative to model chaotic problems, Chaos Interdiscip. J. Nonlinear. Sci. 29(2) (2019), pp. 023111.
  • K.M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Phys. A. 523 (2019), pp. 1072–1090.
  • Y. Pan, Y. He, and A. Mikkola, Accurate real-time truck simulation via semirecursive formulation and Adams-Bashforth-Moulton algorithm, Proc. Acta Mechanica. Sin. 35 (2019), pp. 641–652.
  • R.K. Pandey and H.K. Mishra, Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation, Adv. Comput. Math. 43(2) (2017), pp. 365–383.
  • N.A. Pirim and F. Ayaz, A new technique for solving fractional order systems: Hermite collocation method, Appl. Math. 7(18) (2016), pp. 2307–2323.
  • I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.
  • T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama. Math. J. 19 (1971), pp. 7–15.
  • S. Rathore, D. Kumar, J. Singh, and S. Gupta, Homotopy analysis Sumudu transform method for nonlinear equations, Int. J. Ind. Math. 4(4) (2012), pp. 301–314.
  • I. Ratti, Comparative study of nonlinear partial differential equation using honotopy perturbation transform method (HPTM) using Hés polynomial and mixture of Elzaki transform and partial differential transform method (PDTM), Int. J. Appl. Eng. Res. 13(18) (2018), pp. 14037–14040.
  • A. Salari and B. Ghanbari, Existence and multiplicity for some boundary value problems involving Caputo and Atangana-Baleanu fractional derivatives: A variational approach, Chaos Solitons Fractals127 (2019), pp. 312–317.
  • J. Singh, D. Kumar, Z. Hammouch, and A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput. 316 (2018), pp. 504–515.
  • J. Singh, D. Kumar, R. Swroop, and S. Kumar, An efficient computational approach for time-fractional Rosenau-Hyman equation, Neural. Comput. Appl. 30(10) ( ), pp. 3063–3070.
  • L. Song and W. Wang, A new improved Adomian decomposition method and its application to fractional differential equations, Appl. Math. Model. 37(3) (2013), pp. 1590–1598.
  • A. Stanislavsky and K. Weron, Atypical case of the dielectric relaxation responses and its fractional kinetic equation, Fract. Calc. Appl. Anal. 19(1) (2016), pp. 212–228.
  • S.H. Strogatz, Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry and Engineering, CRC Press, Boca Raton, 2018.
  • R. Subashini, C. Ravichandran, K. Jothimani, and M.H. Baskonus, Existence results of Hilfer integro-differential equations with fractional order, Discrete. Contin. Dyn. Syst. Ser. S 13(3) (2018), pp. 911–923.
  • S. Ullah, M. Khan, and M. Farooq, A new fractional model for the dynamics of the Hepatitis-B virus using the Caputo-Fabrizio derivative, Eur. Phys. J. Plus 133 (2018), pp. 1–14.
  • J. Vahidi, The combined Laplace-homotopy analysis method for partial differential equations, J. Math. Comput. Sci. JMCS 16(1) (2016), pp. 88–102.
  • K. Vishal, S. Kumar, and S. Das, Application of homotopy analysis method for fractional Swift Hohenberg equation-revisited, Appl. Math. Modell. 36(8) (2012), pp. 3630–3637.
  • A. Yokuş and S. Gülbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Appl. Math. Nonlinear. Sci. 4(1) (2019), pp. 35–42.
  • Y. Zhang, Time-Fractional generalized equal width wave equations: formulation and solution via variational methods, Nonlinear. Dyn. Syst. Theor. 14(4) (2014), pp. 410–25.
  • Y.U. Zhang, C. Cattani, and X.J. Yang, Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy 17(10) (2015), pp. 6753–6764.
  • X. Zhang, L. Liu, and Y. Wu, The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium, Appl. Math. Lett. 37 (2014), pp. 26–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.