177
Views
0
CrossRef citations to date
0
Altmetric
Articles

A dynamically consistent nonstandard finite difference scheme for a generalized SEIR epidemic model

&
Pages 409-434 | Received 27 Jun 2023, Accepted 21 Nov 2023, Published online: 14 Dec 2023

References

  • N. Aguila-Camacho, A.M. Duarte-Mermoud, and J.A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), pp. 2951–2957.
  • N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, and W. Adel, Numerical simulation and stability analysis of a novel reaction-diffusion COVID-19 model, Nonlinear Dyn. 106 (2021), pp. 1293–1310.
  • L.J.S. Allen, An Introduction to Mathematical Biology, Pearson Education, Prentice Hall, 2007.
  • L.J.S. Allen and P. van den Driessche, The basic reproduction number in some discrete-time epidemic models, J. Differ. Equ. Appl. 14 (2008), pp. 1127–1147.
  • R. Almeida, Analysis of a fractional SEIR model with treatment, Appl. Math. Lett. 84 (2018), pp. 56–62.
  • U.M. Ascher and L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1998.
  • F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model. 2 (2017), pp. 113–127.
  • F. Brauer, P. Driessche, and J. Wu, Mathematical Epidemiology, Springer-Verlag, Berlin Heidelberg, 2008.
  • M. Caputo, Linear models of dissipation whose Q is almost frequency independent-II, Geophys J. Int.13 (1967), pp. 529–539.
  • L.C. Cardoso, R.F. Camargo, F.L.P. dos Santos, and J.P.C. Dos Santos, Global stability analysis of a fractional differential system in hepatitis B, Chaos Solit. Fractals 143 (2021), p. 110619.
  • J. Cresson and F. Pierret, Non standard finite difference scheme preserving dynamical properties, J. Comput. Appl. Math. 303 (2016), pp. 15–30.
  • J. Cresson and A. Szafrańska, Discrete and continuous fractional persistence problems – the positivity property and applications, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), pp. 424–448.
  • Q.A. Dang and M.T. Hoang, Nonstandard finite difference schemes for a general predator-prey system, J. Comput. Sci. 36 (2019), p. 101015.
  • Q.A. Dang and M.T. Hoang, Positive and elementary stable explicit nonstandard Runge-Kutta methods for a class of autonomous dynamical systems, Int. J. Comput. Math. 97 (2020), pp. 2036–2054.
  • Q.A. Dang and M.T. Hoang, Positivity and global stability preserving NSFD schemes for a mixing propagation model of computer viruses, J. Comput. Appl. Math. 374 (2020), p. 112753.
  • P. Das, R.K. Upadhyay, A.K. Misra, F.A. Rihan, P. Das, and D. Ghosh, Mathematical model of COVID-19 with comorbidity and controlling using non-pharmaceutical interventions and vaccination, Nonlinear Dyn. 106 (2021), pp. 1213–1227.
  • K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010.
  • M.A. Duarte-Mermoud, N. Aguila-Camacho, A.J. Gallegos, and R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), pp. 650–659.
  • M. Ehrhardt, J. Gašper, and S. Kilianová, SIR-based mathematical modeling of infectious diseases with vaccination and waning immunity, J. Comput. Sci. 37 (2019), p. 101027.
  • S. Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, 2005.
  • H. Fatoorehchi and M. Ehrhardt, Numerical and semi-numerical solutions of a modified Thévenin model for calculating terminal voltage of battery cells, J. Energy Stor. 45 (2022), p. 103746.
  • C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, An epidemic model of computer viruses with vaccination and generalized nonlinear incidence rate, Appl. Math. Comput. 222 (2013), pp. 265–274.
  • E. Hincal and S.H. Alsaadi, Stability analysis of fractional order model on corona transmission dynamics, Chaos Solit. Fractals 143 (2021), p. 110628.
  • M.T. Hoang, A novel second-order nonstandard finite difference method for solving one-dimensional autonomous dynamical systems, Commun. Nonlinear Sci. Numer. Simul. 114 (2022), p. 106654.
  • M.T. Hoang, Positivity and boundedness preserving nonstandard finite difference schemes for solving Volterra's population growth model, Math. Comput. Simul. 199 (2022), pp. 359–373.
  • M.T. Hoang, Reliable approximations for a hepatitis B virus model by nonstandard numerical schemes, Math. Comput. Simul. 193 (2022), pp. 32–56.
  • M.T. Hoang, A class of second-order and dynamically consistent nonstandard finite difference schemes for nonlinear Volterra's population growth model, Comput. Appl. Math. 42 (2023), Article number: 85.
  • M.T. Hoang, Dynamical analysis of a generalized hepatitis B epidemic model and its dynamically consistent discrete model, Math. Comput. Simul. 205 (2023), pp. 291–314.
  • M.T. Hoang and M. Ehrhardt, A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator-prey model, Preprint 23/07, University of Wuppertal, June 2023.
  • O. Khyar and K. Allali, Global dynamics of a multi-strain SEIR epidemic model with general incidence rates: application to COVID-19 pandemic, Nonlinear Dyn. 102 (2020), pp. 489–509.
  • A.A. Kibas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 1st ed., Vol. 204, Elsevier Science Inc., 2006.
  • W. Lacarbonara, J. Ma, and C. Nataraj, Preface to the special issue ‘Complex dynamics of COVID-19: modeling, prediction and control (part II)’, Nonlinear Dyn. 109 (2022), pp. 1–3.
  • A. Lahrouz, L. Omari, D. Kiouach, and A. Belmaâti, Complete global stability for an SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math. Comput. 218 (2012), pp. 6519–6525.
  • J.P. LaSalle, The Stability and Control of Discrete Processes, Applied Mathematical Sciences, Vol. 82, Springer-Verlag, New York, 1986.
  • J.P. LaSalle and S. Lefschetz, Stability by Liapunov's Direct Method, Academic Press, New York, 1961.
  • M.Y. Li, J.S. Muldowney, and P. van den Driessche, Global stability of SEIRS models in epidemiology, Can. Appl. Math. Q. 7 (4) (1999), pp. 115–133.
  • Y. Li, Y. Chen, and I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica 45 (2009), pp. 1965–1969.
  • Y. Li, Y. Chen, and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl. 59 (2010), pp. 1810–1821.
  • J. Li, Y. Yang, Y. Xiao, and S. Liu, A class of Lyapunov functions and the global stability of some epidemic models with nonlinear incidence, J. Appl. Anal. Comput. 6 (2016), pp. 38–46.
  • M.Y. Li and J.S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci. 125 (1995), pp. 155–164.
  • M. Martcheva, An Introduction to Mathematical Epidemiology, Springer, New York, 2015.
  • R.E. Mickens, Nonstandard Finite Difference Models of Differential Equations, World Scientific, 1993.
  • R.E. Mickens, Applications of Nonstandard Finite Difference Schemes, World Scientific, 2000.
  • R.E. Mickens, Nonstandard Finite Difference Schemes: Methodology and Applications, World Scientific, 2020.
  • R.E. Mickens and I.H. Herron, Approximate rational solutions to the Thomas-Fermi equation based on dynamic consistency, Appl. Math. Lett. 116 (2021), p. 106994.
  • J. Mondal and S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn. 109 (2022), pp. 177–202.
  • G. Morais Rodrigues Costa, M. Lobosco, M. Ehrhardt, and R.F. Reis, Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19, in Mathematical and Computational Modeling of Phenomena Arising in Population Biology and Nonlinear Oscillations: In honour of the 80th birthday of Ronald E. Mickens, AMS Contemporary Mathematics, A. Gumel ed., 2023. AMS, Rhode Island.
  • R. Padmanabhan, H.S. Abed, N. Meskin, T. Khattab, M. Shraim, and M.A. Al-Hitmi, A review of mathematical model-based scenario analysis and interventions for COVID-19, Comput. Methods Programs Biomed. 209 (2021), p. 106301.
  • V. Piccirillo, Nonlinear control of infection spread based on a deterministic SEIR model, Chaos Solit. Fractals 149 (2021), p. 111051.
  • I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  • G. Rohith and K.B. Devik, Dynamics and control of COVID-19 pandemic with nonlinear incidence rates, Nonlinear Dyn. 101 (2020), pp. 2013–2026.
  • H.L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, 1995.
  • P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), pp. 29–48.
  • C. Vargas-De-Leon, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul. 24 (2015), pp. 75–85.
  • F. Wang and Y. Yang, Fractional order Barbalat's lemma and its applications in the stability of fractional order nonlinear systems, Math. Model. Anal. 22 (2017), pp. 503–513.
  • Q. Yang, X. Zhang, and D. Jiang, Asymptotic behavior of a stochastic SIR model with general incidence rate and nonlinear Lévy jumps, Nonlinear Dyn. 107 (2022), pp. 2975–2993.
  • L. Zheng, X. Yang, and L. Zhang, On global stability analysis for SEIRS models in epidemiology with nonlinear incidence rate function, Int. J. Biomath. 10 (2017), p. 1750019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.