651
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Metabolic rate and activity of blue mussel Mytilus edulis trossulus under short-term exposure to carbon dioxide-induced water acidification and oxygen deficiency

&
Pages 25-39 | Received 24 May 2014, Accepted 26 Aug 2014, Published online: 15 Dec 2014

References

  • Babarro JMF, Labarta U, Reiriz MJF. 2007. Energy metabolism and performance of Mytilus galloprovincialis under anaerobiosis. J Mar Biol Assoc UK. 87:941–946.10.1017/S0025315407053726
  • Bayne BL. 1971. Ventilation, the heart beat and oxygen uptake by Mytilus edulis L. in declining oxygen tension. Comp Biochem Physiol Part A. 40:1065–1085.10.1016/0300-9629(71)90295-7
  • Beesley A, Lowe DM, Pascoe CA, Widdicombe S. 2008. Effects of CO2-induced seawater acidification on the health of Mytilus edulis. Clim Res. 37:215–225.10.3354/cr00765
  • Berge JA, Bjerkeng B, Pettersen O, Schaanning MT, Øxnevad S. 2006. Effects of increased sea water concentrations of CO2 on growth of the bivalve Mytilus edulis L. Chemosphere. 62:681–687.10.1016/j.chemosphere.2005.04.111
  • Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R. 2008. Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol. 2:67–74.10.3354/ab00037
  • Boutilier RG. 2001. Mechanisms of cell survival in hypoxia and hypothermia. Jour Exp Biol. 204:3171–3181.
  • Boyd JN, Burnett LE. 1999. Reactive oxygen intermediate production by oyster hemocytes exposed to hypoxia. J Exp Biol. 202:3135–3143.
  • Branch TA, DeJoseph BM, Ray LJ, Wagner CA. 2012. Impacts of ocean acidification on marine seafood. Trends Ecol Evol. 28:178–186.
  • Briffa M, de la Haye K, Munday PL. 2012. High CO2 and marine animal behaviour: potential mechanisms and ecological consequences. Mar Pol Bul. 64:1519–1528.10.1016/j.marpolbul.2012.05.032
  • Burnett LE. 1997. The challenges of living in hypoxic and hypercapnic aquatic environments. Am Zool. 37:633–640.
  • Burnett LE, Stickle WB. 2001. Physiological responses to hypoxia. Coast Estuar Stud. 58:101–114.10.1029/CE058
  • Cochran RE, Burnett LE. 1996. Respiratory responses of the salt marsh animals, Fundulus heteroclitus, Leiostomus xanthurus, and Palaemonetes pugio to environmental hypoxia and hypercapnia and to the organophosphate pesticide, azinphosmethyl. J Exp Mar Biol Ecol. 195:125–144.10.1016/0022-0981(95)00102-6
  • Conley DJ, Björck S, Bonsdorff E, Carstensen J, Destouni G, Gustafsson BG, Hietanen S, Kortekaas M, Kuosa H, Markus Meier HE, et al. 2009. Hypoxia-related processes in the Baltic Sea. Environ Sci Technol. 43:3412–3420.10.1021/es802762a
  • De Vooys CGN. 1987. Adaptation to anaerobic metabolism in two mussel species, Mytilus edulis and Mytilus galloprovincialis, from the tidal zone at Arcachon Bay, France. Neth J Sea Res. 21:17–23.10.1016/0077-7579(87)90019-6
  • De Zwaan A, Zandee DI. 1972. The utilization of glycogen and accumulation of some intermediates during anaerobiosis in Mytilus edulis L. Comp Biochem Physiol Part A. 43:47–54.10.1016/0305-0491(72)90200-3
  • De Zwaan A, Cortesi P, Van den Thillart G, Roos J, Storey KB. 1991. Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: a biochemical analysis. Mar Biol. 111:343–351.10.1007/BF01319405
  • Diaz RJ, Rosenberg R. 1995. Marine benthic hypoxia: review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev. 33:245–303.
  • Dickinson GH, Ivanina AV, Matoo OB, Portner HO, Lannig G, Bock C, Beniash E, Sokolova IM. 2012. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J Exp Biol. 215:29–43.10.1242/jeb.061481
  • Dissanayake A, Ishimatsu A. 2011. Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: Penaeidae). ICES J Mar Sci. 68:1147–1154.10.1093/icesjms/fsq188
  • Dissanayake A, Clough R, Spicer JI, Jones MB. 2010. Effects of hypercapnia on acid-base balance and osmo-/iono-regulation in prawns (Decapoda: Palaemonidae). Aquatic Biol. 11:27–36.10.3354/ab00285
  • Doney SC, Fabry VJ, Feely RA, Kleypas JA. 2009. Ocean acidification: the other CO2 problem. Ann Rev Mar Sci. 1:169–192.10.1146/annurev.marine.010908.163834
  • Dwyer JJ, Burnett LE. 1996. Acid-base status of the oyster Crassostrea virginica in response to air exposure and to infections by Perkinsus marinus. Biol Bull. 190:139–147.10.2307/1542682
  • Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C. 2010. The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine Coastal Shelf Sci. 88:442–449.10.1016/j.ecss.2010.05.004
  • Fernández-Reiriz MJ, Range P, Álvarez-Salgado XA, Espinosa J, Labarta U. 2012. Tolerance of juvenile Mytilus galloprovincialis to experimental seawater acidification. Mar Ecol Prog Ser. 454:65–74.10.3354/meps09660
  • García-March JR, Sanchís Solsona MÁ, García-Carrascosa AM. 2008. Shell gaping behaviour of Pinna nobilis L., 1758: circadian and circalunar rhythms revealed by in situ monitoring. Mar Biol. 153:689–698.10.1007/s00227-007-0842-6
  • Gilbert D, Rabalais NN, Díaz RJ, Zhang J. 2010. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences. 7:2283–2296.10.5194/bg-7-2283-2010
  • Gnaiger E. 1979. Direct calorimetry in ecological energetics. Long term monitoring of aquatic animals. Experientia Suppl. 37:155–165.10.1007/978-3-0348-5545-7
  • Guppy M, Withers P. 1999. Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos Soc. 74:1–40.10.1017/S0006323198005258
  • Hammen CS. 1980. Total energy metabolism of marine bivalve mollusks in anaerobic and aerobic states. Comp Biochem Physiol Part A. 67:617–621.10.1016/0300-9629(80)90250-9
  • Hardewig I, Addink ADF, Grieshaber MK, Pörtner HO, van den Thillart G. 1991. Metabolic rates at different oxygen levels determined by direct and indirect calorimetry in the oxyconformer Sipunculus nudus. J Exp Biol. 157:143–160.
  • Havenhand JN. 2012. How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups. AMBIO. 41:637–644.10.1007/s13280-012-0326-x
  • Heinemann A, Fietzke J, Melzner F, Böhm F, Thomsen J, Garbe-Schönberg D, Eisenhauer A. 2012. Conditions of Mytilus edulis extracellular body fluids and shell composition in a pH-treatment experiment: acid-base status, trace elements and δ11B. Geochem Geophys Geosyst. 13. doi:10.1029/2011GC003790.
  • Holopainen IJ, Penttinen OP. 1993. Normoxic and anoxic heat output of the freshwater bivalves Pisidium and Sphaerium. Oecologia. 93:215–223.10.1007/BF00317674
  • Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ. 9:18–26.10.1890/100008
  • Hüning AK, Melzner F, Thomsen J, Gutowska MA, Krämer L, Frickenhaus S, Rosenstiel P, Pörtner HO, Philipp EER, Lucassen M. 2013. Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: implications for shell formation and energy metabolism. Mar Biol. 160:1845–1861.10.1007/s00227-012-1930-9
  • Imai T, Sakai S. 1961. Study of breeding of Japanese oyster, Crassostrea gigas. Tohoku K Agric Res. 12:125–171.
  • Isani G, Cattani O, Zurzolo M, Pagnucco C, Cortesi P. 1995. Energy metabolism of the mussel, Mytilus galloprovincialis, during long-term anoxia. Comp Biochem Physiol Part B. 110:103–113.10.1016/0305-0491(94)00132-E
  • Ishimatsu A, Kikkawa T, Hayashi M, Lee KS, Kita J. 2004. Effects of CO2 on marine fish: larvae and adults. J Oceanogr. 60:731–741.10.1007/s10872-004-5765-y
  • Jakubowska M, Jerzak M, Normant M, Burska D, Drzazgowski J. 2013. Effect of the carbon dioxide-induced water acidification on physiological processes of Baltic isopod Saduria entomon. J Shell Res. 32:825–834.10.2983/035.032.0326
  • Lamprecht I. 1998. Monitoring metabolic activities of small animals by means of microcalorimetry. Pure & Appl Chem. 70:695–700.
  • Latała A, Jodłowska S, Pniewski F. 2006. Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Algol Stud. 122:137–154.10.1127/1864-1318/2006/0122-0137
  • Liu W, He M. 2012. Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chin J Oceanol Limnol. 30:206–211.10.1007/s00343-012-1067-1
  • Mangum CP, Burnett LE. 1986. The CO2 sensitivity of the hemocyanins and its relationship to Cl− sensitivity. Biol Bull. 171:248–263.10.2307/1541921
  • Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO. 2009. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences. 6:2313–2331.10.5194/bg-6-2313-2009
  • Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska MA. 2011. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. Plos one. 6:e24223.10.1371/journal.pone.0024223
  • Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A. 2012. Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol. 60:1875–1888.
  • Metzger R, Sartoris FJ, Langenbuch M, Pörtner HO. 2007. Influence of elevated CO2 concentrations on thermal tolerance of the edible crab Cancer pagurus. J Therm Biol. 32:144–151.10.1016/j.jtherbio.2007.01.010
  • Michaelidis B, Ouzounis C, Paleras A, Pörtner HO. 2005. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. Mar Ecol Prog Ser. 293:109–118.10.3354/meps293109
  • Miles H, Widdicombe S, Spicer JI, Hall-Spencer J. 2007. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. Mar Poll Bull. 54:89–96.10.1016/j.marpolbul.2006.09.021
  • Navarro JM, Torres R, Acuña K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V. 2013. Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere. 90:1242–1248.10.1016/j.chemosphere.2012.09.063
  • Normant M, Dziekonski M, Drzazgowski J, Lamprecht I. 2007. Metabolic investigations of aquatic organisms with a new twin heat conduction calorimeter. Thermochim Acta. 458:101–106.10.1016/j.tca.2007.01.025
  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, et al. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature. 437:681–686.10.1038/nature04095
  • Ortmann C, Grieshaber MK. 2003. Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. J Exp Biol. 206:4167–4178.10.1242/jeb.00656
  • Pamatmat MM. 1980. Simultaneous direct and indirect calorimetry. In: Gnaiger E, Forstner H, editors. Polarographic oxygen sensors: aquatic and physiological applications. Berlin: Springer-Verlag; p. 1–18.
  • Pedersen TF. 1992. Temporal variations in heat dissipation and oxygen uptake of the soft shell clam Mya arenaria L. (Bivalvia). Ophelia. 36:203–216.10.1080/00785326.1992.10430371
  • Pörtner HO, Bock C, Reipschlager A. 2000. Modulation of the cost of pHi regulation during metabolic depression: a (31) P NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Mar Biol Ecol. 203:2417–2428.
  • Pörtner HO, Langenbuch M, Michaelidis B. 2005. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res Oceans. 110:1978–2012. doi:10.1029/2004JC002561.
  • Pörtner HO, Langenbuch M, Reipschläger A. 2004. Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and Earth history. J Oceanogr. 60:705–718.10.1007/s10872-004-5763-0
  • Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FM. 2000. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature. 407:364–367.10.1038/35030078
  • Riginos C, Cunningham CW. 2005. Invited review: local adaptation and species segregation in two mussel (Mytilus edulis × Mytilus trossulus) hybrid zones. Mol Ecol. 14:381–400.
  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté É, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso JP, Hall-Spencer JM. 2011. Coral and mollusc resistance to ocean acidification adversely affected by warming. Nature Clim Change. 1:308–312.10.1038/nclimate1200
  • Rosa R, Seibel BA. 2008. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Nat Acad Sci. 105:20776–20780.10.1073/pnas.0806886105
  • Sanford E, Gaylord B, Hettinger A, Lenz EA, Meyer K, Hill TM. 2014. Ocean acidification increases the vulnerability of native oysters to predation by invasive snails. Proc R Soc B. 281: 20132681.
  • Saphöerster J. 2008. The physiology of the blue mussel (Mytilus edulis) in relation to ocean acidification [Doctoral dissertation]. Christian-Albrechts-Universität, Rostock.
  • Schneider B. 2011. The CO2 system of the Baltic Sea: biogeochemical control and impact of anthropogenic CO2. In: Schernewski G, Hofstede J, Neumann T, editors. Global change and Baltic Coastal Zones. Dordrecht: Springer Netherlands; Vol. 1, p. 33–49.10.1007/978-94-007-0400-8
  • Seibel BA, Walsh PJ. 2003. Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol. 206:641–650.10.1242/jeb.00141
  • Shick JM, De Zwaan A, De Bont MTh. 1983. Anoxic metabolic rate in the mussel Mytilus edulis L. estimated by simultaneous direct calorimetry and biochemical analysis. Physiol Zool. 56:56–63.
  • Spicer JI, Raffo A, Widdicombe S. 2007. Influence of CO2-related seawater acidification on extracellular acid-base balance in the velvet swimming crab Necora puber. Mar Biol. 151:1117–1125.10.1007/s00227-006-0551-6
  • Stuckas H, Stoof K, Quesada H, Tiedemann R. 2009. Evolutionary implications of discordant clines across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity. 103:146–156.10.1038/hdy.2009.37
  • Taguchi F, Fujiwara T. 2010. Carbon dioxide stored and acidified low oxygen bottom waters in coastal seas, Japan. Estuarine Coastal Shelf Sci. 86:429–433.10.1016/j.ecss.2009.07.037
  • Taylor AC, Brand AR. 1975. A comparative study of the respiratory responses of the bivalves Arctica islandica (L.) and Mytilus edulis L. to declining oxygen tension. Proc R Soc B. 190:443–456.10.1098/rspb.1975.0105
  • Thomsen J, Casties I, Pansch C, Körtzinger A, Melzner F. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field experiments. Global Change Biol. 19:1017–1027.10.1111/gcb.12109
  • Thomsen J, Gutowska MA, Saphörster J, Heinemann A, Trübenbach K, Fietzke J, Hiebenthal C, Eisenhauer A, Körtzinger A, Wahl M, Melzner F. 2010. Calcifying invertebrates succeed in a naturally CO2 enriched coastal habitat but are threatened by high levels of future acidification. Biogeosciences Discuss. 7:5119–5156.10.5194/bgd-7-5119-2010
  • Thomsen J, Melzner F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol. 157:2667–2676.10.1007/s00227-010-1527-0
  • Väinölä R, Strelkov P. 2011. Mytilus trossulus in northern Europe. Mar Biol. 158:817–833.
  • Walther K, Sartoris FJ, Bock C, Pörtner HO. 2009. Impact of anthropogenic ocean acidification on thermal tolerance of the spider Hyas araneus. Biogeosciences. 6:2207–2215.10.5194/bg-6-2207-2009
  • Wang WX, Widdows J. 1993a. Calorimetric studies on the energy metabolism of an infaunal bivalve, Abra tenuis, under normoxia, hypoxia and anoxia. Mar Biol. 116:73–79.10.1007/BF00350733
  • Wang WX, Widdows J. 1993b. Metabolic responses of the common mussel Mytilus edulis to hypoxia and anoxia. Mar Ecol Prog Ser. 95:205–214.10.3354/meps095205
  • Whiteley NM. 2011. Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser. 430:257–271.10.3354/meps09185
  • Willmer P, Stone G, Johnston I. 2000. Environmental physiology of animals. Oxford: Blackwell Science.
  • Willson LL, Burnett LE. 2000. Whole animal and gill tissue oxygen uptake in the Eastern oyster, Crassostrea virginica: effects of hypoxia, hypercapnia, air exposure, and infection with the protozoan parasite Perkinsus marinus. J Exp Mar Biol Ecol. 246:223–240.10.1016/S0022-0981(99)00183-5
  • Wolowicz M, Sokolowski A, Bawazir AS, Lasota R. 2006. Effect of eutrophication on the distribution and ecophysiology of the mussel Mytilus trossulus (Bivalvia) in southern Baltic Sea (the Gulf of Gdansk). Limnol Oceanogr. 51:580–590.10.4319/lo.2006.51.1_part_2.0580

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.