575
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

New Polylactic Acid Composites for Packaging Applications: Mechanical Properties, Thermal Behavior, and Antimicrobial Activity

, &
Pages 681-692 | Received 03 Jun 2015, Accepted 16 Jul 2015, Published online: 24 Sep 2015

REFERENCES

  • Cooksey, K. 2005. Effectiveness of antimicrobial food packaging materials. Food Addit. Contam. 22(10): 980–987.
  • Mascheroni, E., V. Guillard, F. Nalin, L. Mora, and L. Piergiovanni. 2010. Diffusivity of propolis compounds in polylactic acid polymer for the development of anti-microbial packaging films. J. Food Eng. 98: 294–301.
  • Cooksey, K. 2010. Active packaging and the shelf life of foods. In Food Packaging and Shelf Life: A Practical Guide, ed. G. L. Robertson. Boca Raton, FL: CRC Press, pp. 82, 373–374.
  • Armentano, I., N. Bitinis, E. Fortunati, S. Mattioli, N. Rescignano, R. Verdejo, M. A. Lopez-Manchado, and J. M. Kenny. 2013. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 38(10–11): 1720–1747.
  • Zini, E., and M. Scandola. 2011. Green composites. An overview. Polym. Compos. 32(12): 1905–1915.
  • Yussuf, A., I. Massoumi, and A. Hassa. 2010. Comparison of polylactic acid/kenaf and polylactic acid/rise husk composites: The influence of the natural fibers on the mechanical, thermal and biodegradability properties. J. Polym. Environ. 18(3): 422–429.
  • Krishnamachari, P., J. Zhang, J. Z. Lou, J. H. Yan, and L. Uitenham. 2009. Biodegradable poly(lactic acid)/clay nanocomposites by melt intercalation: A study of morphological, thermal and mechanical properties, Int. J. Polym. Anal. Charact. 14(4): 336–350.
  • van den Oever, M. J. A., B. Beck, and J. Müssig. 2010. Agrofibre reinforced poly(lactic acid) composites: Effect of moisture on degradation and mechanical properties. Composites Part A 41(11): 1628–1635.
  • Huda, M. S., L. T. Drzal, A. K. Mohanty, and M. Misra. 2008. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos. Sci. Technol. 68(2): 424–432.
  • Spiridon, I., K. Leluk, A. M. Resmerita, and R. N. Darie. 2015. Evaluation of PLA–lignin bioplastics properties before and after accelerated weathering. Composites Part B: Eng. 69(1): 342–349.
  • Zhan, L., J. Hu, L. T. Lim, L. Pang, Y. Li, and J. Shao. 2013. Light exposure inhibiting tissue browning and improving antioxidant capacity of fresh-cut celery (Apium graveolens var. dulce). Food Chem. 141: 2473–2478.
  • Moradi, M., H. Tajik, S. M. R. Rohani, A. R. Oromiehie, H. Malekinejad, J. Aliakbarlu, and M. Hadian. 2012. Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. Lebensm.-Wiss. Technol. 46: 477–484.
  • Shah, M. A., S. J. Don Bosco, and S. A. Mir. 2014. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 98(1): 21–33.
  • Zhu, F., B. Du, L. Zheng, and J. Li. 2015. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chem. 186: 207–212. doi:10.1016/j.foodchem.2014.07.057
  • Martins, J. T., M. A. Cerqueira, and A. A. Vicente. 2012. Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocoll. 27(1): 220–227.
  • Ashok, B., S. Naresh, K. Obi Reddy, K. Madhukar, J. Cai, L. Zhang, and A. Varada Rajulu. 2014. Tensile and thermal properties of poly(lactic acid)/eggshell powder composite films. Int. J. Polym. Anal. Charact. 19(3): 245–255.
  • Salazar, S. A., N. Gamez-Meza, L. Medina-Juàrez, H. Soto-Valdez, and P. Cerruti. 2014. From nutraceutics to materials: Effect of resveratrol on the stability of polylactide. ACS Sustain. Chem. Eng. 2(6): 1534–1542.
  • Bledzki, A. K., A. Jaszkiewicz, and D. Scherzer D. 2009. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Composites Part A 40: 404–412.
  • Molinaro, S., M. C. Romero, M. Barao, A. Sensidoni, C. Lagazio, M. Morris, and J. Kerry. 2013. Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J. Food Eng. 117(1): 113–123.
  • Monteiro, S., V. Calado, R. Y. Rodriguez, and F. Margem. 2012. Thermogravimetric behavior of natural fibres reinforced polymer composites – An overview. Mater. Sci. Eng. A 557: 17–28.
  • Florjanczyk, Z., M. Debowski, E. Chwojnowska, K. Lokaj, and J. Ostrowska. 2010. Synthetical and natural polymers in modern polymeric materials. Part I: Polymers from renewable resources and polymer nanocomposites. Polimery 10(10): 689–774.
  • Wang, Y., Y. Qin, Y. Zhang, M. Yuan, H. Li, and M. Yuan. 2014. Effects of N-octyl lactate as plasticizer on the thermal and functional properties of extruded PLA-based films. Int. J. Biol. Macromol. 67(1): 58–63.
  • Auras, R., B. Harte, and S. Selke. 2004. An overview of polylactides as packaging materials. Macromol. Biosci. 4(9): 835–864.
  • Llobera, A., and J. Cañellas. 2008. Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by-products. Int. J. Food Sci. Technol. 43(11): 1953–1959.
  • Moldes, D., P. P. Gallego, S. R. Couto, and A. Sanroman, A. 2003. Grape seeds: The best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsute. Biotechnol. Lett. 25(6): 491–495.
  • González-Centeno, M. R., C. Rosselló, S. Simal, M. C. Garau, F. López, and A. Femenia. 2010. Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: Grape pomaces and stems. Lebensm.-Wiss. Technol. 43(10): 1580–1586.
  • Karpe, A. V., I. H. Harding, and E. A. Palombo. 2014. Comparative degradation of hydrothermal pretreated winery grape wastes by various fungi. Ind. Crops Prod. 59:228–233.
  • Siddiqui, I. 1990. Studies on vegetables. Investigation of water, oxalate, and sodium hydroxide soluble celery (Apium graveolens) polysaccharides: Pectic polysaccharides. J. Agric. Food Chem. 38(1): 70–74.
  • Ban, W., J. Song, and L. A. Lucia. 2007. Influence of natural biomaterials on the absorbency and transparency of starch-derived films: An optimization study. Ind. Eng. Chem. Res. 46(20): 6480–6485.
  • Joerger, R. D. 2007. Antimicrobial films for food applications: A quantitative analysis of their effectiveness. Packag. Technol. Sci. 20(4): 231–273.
  • Deng, Q., and T. Zhao. 2011. Physicochemical, nutritional, and antimicrobial properties of wine grape (cv. Merlot) pomace extract-based films. J. Food Sci. 76(3): 309–317.
  • Schieber, A., F. C. Stintzing, and R. Carle. 2001. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 12(11): 401–413.
  • Yu, J., and M. Ahmedna. 2013. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 48(2): 221–237.
  • Rockenbach, I. I., L. V. Gonzaga, V. M. Rizelio, A. E. de Souza Schmidt Gonçalves, M. I. Genovese, and R. Fett. 2011. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 44(4): 897–901.
  • Yang, Y., and G. Ren. 2011. Effect of thermal treatment on phenolic composition and antioxidant activities of two celery cultivars. Lebensm.-Wiss. Technol. 44(1): 181–185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.