132
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Nonisothermal crystallization and microstructural behavior of poly(ε-caprolactone) and granular tapioca starch-based biocomposites

, &
Pages 222-236 | Received 16 Dec 2016, Accepted 11 Jan 2017, Published online: 07 Mar 2017

References

  • Goswami, J., N. Bhatnagar, S. Mohanty, and A. K. Ghosh. 2013. Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application. Express Polym. Lett. 7(9): 767–777.
  • Baji, A., S. C. Wong, T. S. Srivatsan, G. O. Njus, and G. Mathur. 2006. Processing methodologies for polycaprolactone–hydroxyapatite composites: A review. Mater. Manuf. Process. 21: 211–218.
  • Fan, H., and Z. Jin. 2015. Hierarchical porous polycaprolactone microspheres generated via a simple pathway combining nanoprecipitation and hydrolysis. Chem. Commun. 51: 15114–15117.
  • Mahieu, A., C. Terrié, A. Agoulon, N. Leblanc, and B. Youssef. 2013. Thermoplastic starch and poly(ε-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J. Polym. Res. 20: 1–13.
  • Avérous, L. 2004. Biodegradable multiphase systems based on plasticized starch: A review. J. Macromol. Sci. C 44: 231–74.
  • Chen, H. L., S. F. Wang, and T. L. Lin. 1998. Morphological structure of crystalline polymer blend involving hydrogen bonding: Polycaprolactone/poly(4-vinylphenol) system. Macromolecules 31: 8924–8930.
  • Singla, R. K., S. N. Maiti, and A. K. Ghosh. 2016. Crystallization, morphological, and mechanical response of poly(lactic acid)/lignin-based biodegradable composites. Polym.-Plast. Technol. Eng. 55: 475–485.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2014. Review: raw natural fiber-based polymer composites. Int. J. Polym. Anal. Charact. 19: 256–271.
  • Battegazzore, D., J. Alongi, and A. Frache. 2014. Poly(lactic acid)-based composites containing natural fillers: Thermal, mechanical and barrier properties. J. Polym. Environ. 22: 88–98.
  • Schmid, M., C. Herbst, K. Müller. 2015. Effect of potato pulp filler on the mechanical properties and water vapour transmission rate of thermoplastic WPI/PBS blends. Polym.-Plast. Technol. Eng. 55(5): 510–517.
  • de Teixeira, E. M., Curvelo, A. A. S., Corrêa, A. C., Marconcini, J. M., Glenn, G. M., Mattoso, L. H. C. 2012. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly(lactic acid). Ind. Crops Prod. 37: 61–68.
  • Vásconez, M. B., S. K. Flores, C. A. Campos, J. Alvarado, and L. N. Gerschenson. 2009. Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res. Int. 42: 762–769.
  • Maran, J. P., V. Sivakumar, R. Sridhar, and K. Thirugnanasambandham. 2013. Development of model for barrier and optical properties of tapioca starch based edible films. Carbohydr. Polym. 92: 1335–1347.
  • Fuqua, M. A., V. S. Chevali, and C. A. Ulven. 2013. Lignocellulosic byproducts as filler in polypropylene: Comprehensive study on the effects of compatibilization and loading. J. Appl. Polym. Sci. 127: 862–868.
  • Sharma, R., and S. N. Maiti. 2014. Effects of SEBS-g-MA copolymer on non-isothermal crystallization kinetics of polypropylene. J. Mater. Sci. 50: 447–456.
  • Sharma R and S. N. Maiti 2015. Effects of crystallinity of polypropylene (PP) on the mechanical properties of PP/styrene–ethylene–butylene–styrene-g-maleic anhydride (SEBS-g-MA)/teak wood flour (TWF) composites. Polym. Bull. 72: 627–643.
  • Gupta, A., and V. Choudhary. 2010. Isothermal and non‐isothermal crystallization kinetics and morphology of poly(trimethylene terephthalate)/multiwalled carbon nanotube composites. Macromol. Symp. 290: 56–69.
  • Balamurugan, G. P., and S. N. Maiti. 2008. Nonisothermal crystallization kinetics of polyamide 6 and ethylene-co-butyl acrylate blends. J. Appl. Polym. Sci. 107: 2414–2435.
  • Wellen, R. M. R., and M. S. Rabello. 2005. The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate). J. Mater. Sci. 40: 6099–6104.
  • Zou, P., S. Tang, Z. Fu, and H. Xiong. 2009. Isothermal and non-isothermal crystallization kinetics of modified rape straw flour/high-density polyethylene composites. Int. J. Therm. Sci. 48: 837–846.
  • Ferreira, C. I., C. D. Castel, M. A. S. Oviedo., and R. S. Mauler. 2013. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim. Acta 553: 40–48.
  • Verma, P., and V. Choudhary. 2015. Polypropylene random copolymer/MWCNT nanocomposites: Isothermal crystallization kinetics, structural, and morphological interpretations. J. Appl. Polym. Sci. doi:10.1002/APP.41734
  • Cai, J., Z. Xiong, M. Zhou, J. Tan, F. Zeng Meihuma, S. Lin, H. Xiong. 2014. Thermal properties and crystallization behavior of thermoplastic starch/poly(ε-caprolactone) composites. Carbohydr. Polym. 102: 746–754.
  • Perez, C., and V. Alvarez. 2015. Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites. J. Therm. Anal. Calorim. 120: 1445–1455.
  • Rinawa, K., S. N. Maiti, R. Sonnier, and J. L. Cuesta. 2015. Non-isothermal crystallization kinetics and thermal behaviour of PA12/SEBS-g-MA blends. Bull. Mater. Sci. 38: 1315–1327.
  • Jeziorny, A. 1978. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer 19: 1142–1144.
  • Ozawa, T. 1971. Kinetics of non-isothermal crystallization. Polymer 12: 150–158.
  • Evans, U. R. 1945. The laws of expanding circles and spheres in relation to the lateral growth of surface films and the grain-size of metals. Trans. Faraday Soc. 41: 365–374.
  • Liu, T., Z. Mo, S. Wang, and H. Zhang. 1997. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 37: 568–575.
  • Xia, X-F., J-H. Zhang, J-M. Fan, Q-L. Jiang, and S. Xu. 2016. Effect of functionalization on non-isothermal crystallization behavior of polypropylene. Int. J. Polym. Anal. Charact. 21: 697–707.
  • Dobreva, A., and I. Gutzow. 1993. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J. Non-Cryst. Solids 162: 1–12.
  • Dobreva, A., and Gutzow, I. 1993. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J. Non-Cryst. Solids 162: 13–25.
  • Achla, S. N. Maiti, and J. Jacob. 2016. Analytical interpretation of mechanical response of green biocomposites based on poly(ε-caprolactone) and granular tapioca starch. Polym. Bull. 6: 1–19.
  • Kissinger, H. E. 1956. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57: 217–221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.