3,852
Views
9
CrossRef citations to date
0
Altmetric
Articles

Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment

, , , , &
Pages 383-395 | Received 14 Mar 2018, Accepted 19 Mar 2018, Published online: 19 Apr 2018

References

  • Singh, S., S. Sharma, A. Umar, S. K. Mehta, M. S. Bhatti, and S. K. Kansal. 2018. Recycling of waste poly(ethylene terephthalate) bottles by alkaline hydrolysis and recovery of pure nanospindle-shaped terephthalic acid. J. Nanosci. Nanotechnol. 18:5804–5809. doi:10.1166/jnn.2018.15363.
  • Sharuddin, S. D. A., F. Abnisa, W. M. A. W. Daud, and M. K. Aroua. 2016. A review on pyrolysis of plastic wastes. Energy Convers. Manage. 115:308–326. doi:10.1016/j.enconman.2016.02.037.
  • Rodriguez-Perez, S., A. Serrano, A. A. Pantion, and B. Alonso-Farinas. 2018. Challenges of scaling-up PHA production from waste streams. A review. J. Environ. Manage. 205:215–230. doi:10.1016/j.jenvman.2017.09.083.
  • Trache, D., M. Hazwan Hussin, M. K. M. Haafiz, and V. K. Thakur. 2017. Recent progress in cellulose nanocrystals: Sources and production. Nanoscale 9:1763–1786. doi:10.1039/C6NR09494E.
  • Singha, A. S., and V. K. Thakur. 2008. Fabrication of Hibiscus sabdariffa fibre reinforced polymer composites. Iran Polym. J. 17:541–553.
  • Attaran, S. A., A. Hassan, and M. U. Wahit. 2017. Materials for food packaging applications based on bio-based polymer nanocomposites: A review. J. Thermoplast. Compos. Mater. 30:143–173. doi:10.1177/0892705715588801.
  • Kumar, N., P. Kaur, and S. Bhatia. 2017. Advances in bio-nanocomposite materials for food packaging: A review. Nutr. Food Sci. 47:591–606. doi:10.1108/NFS-11-2016-0176.
  • Siracusa, V., P. Rocculi, S. Romani, and M. Dalla Rosa. 2008. Biodegradable polymers for food packaging: A review. Trends Food Sci. Technol. 19:634–643. doi:10.1016/j.tifs.2008.07.003.
  • Song, F., D.-L. Tang, X.-L. Wang, and Y.-Z. Wang. 2011. Biodegradable soy protein isolate-based materials: A review. Biomacromolecules 12:3369–3380. doi:10.1021/bm200904x.
  • Li, J., R. Li, and J. Li. 2017. Current research scenario for microcystins biodegradation - A review on fundamental knowledge, application prospects and challenges. Sci. Total Environ. 595:615–632. doi:10.1016/j.scitotenv.2017.03.285.
  • Leja, K., and G. Lewandowicz. 2010. Polymer biodegradation and biodegradable polymers - A Review. Pol. J. Environ. Stud. 19:255–266.
  • Shah, A. A., F. Hasan, Z. Shah, N. Kanwal, and S. Zeb. 2013. Biodegradation of natural and synthetic rubbers: A review. Int. Biodeterior. Biodegrad. 83:145–157. doi:10.1016/j.ibiod.2013.05.004.
  • Rhim, J.-W., H.-M. Park, and C.-S. Ha. 2013. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38:1629–1652. doi:10.1016/j.progpolymsci.2013.05.008.
  • Singh, S., K. K. Gaikwad, M. Lee, and Y. S. Lee. 2018. Temperature-regulating materials for advanced food packaging applications: A review. J. Food Meas. Charact. 12:588–601. doi:10.1007/s11694-017-9672-5.
  • Thakur, V. K., and M. R. Kessler. 2014. Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain. Chem. Eng. 2:2454–2460.
  • Adu, C., M. Jolly, and V. K. Thakur. 2018. Exploring new horizons for paper recycling: A review of biomaterials and biorefinery feedstocks derived from wastepaper. Curr. Opin. Green Sustain. Chem. 13:21–26. doi:10.1016/j.cogsc.2018.03.003.
  • Jayanth, D., P. S. Kumar, G. C. Nayak, J. S. Kumar, S. K. Pal, and R. Rajasekar. 2018. A review on biodegradable polymeric materials striving towards the attainment of green environment. J. Polym. Environ. 26:838–865. doi:10.1007/s10924-017-0985-6.
  • Pappu, A., V. Patil, S. Jain, A. Mahindrakar, R. Haque, and V. K. Thakur. 2015. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review. Int. J. Biol. Macromol. 79:449–458. doi:10.1016/j.ijbiomac.2015.05.013.
  • Aziz, M., and S. Karboune. 2018. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: A review. Crit. Rev. Food Sci. Nutr. 58:486–511. doi:10.1080/10408398.2016.1194256.
  • Tawakkal, I. S. M. A., M. J. Cran, J. Miltz, and S. W. Bigger. 2014. A review of poly(lactic acid)-based materials for antimicrobial packaging. J. Food Sci. 79:R1477–R1490. doi:10.1111/1750-3841.12534.
  • Johansson, C., J. Bras, I. Mondragon, P. Nechita, D. Plackett, P. Simon, D. G. Svetec, S. Virtanen, M. G. Baschetti, C. Breen, and S. Aucejo. 2012. Renewable fibers and bio-based materials for packaging applications - A review of recent developments. Bioresources 7:2506–2552.
  • Otoni, C. G., R. J. Avena-Bustillos, H. M. C. Azeredo, M. V. Lorevice, M. R. Moura, L. H. C. Mattoso, and T. H. McHugh. 2017. Recent advances on edible films based on fruits and vegetables – A review. Compr. Rev. Food Sci. Food Saf. 16:1151–1169. doi:10.1111/1541-4337.12281.
  • Othman, S. H. ed(2014) Bio-nanocomposite materials for food packaging applications: Types of biopolymer and nano-sized filler. In 2nd International Conference on Agricultural and Food Engineering (Cafe 2014) - New Trends Forward, eds. N. L. Chin, H. C. Man, R. A. Talib, pp. 296–303. Amsterdam: Elsevier Science Bv.
  • Miculescu, F., A. Maidaniuc, S. I. Voicu, V. K. Thakur, G. E. Stan, and L. T. Ciocan. 2017. Progress in hydroxyapatite–starch based sustainable biomaterials for biomedical bone substitution applications. ACS Sustain. Chem. Eng. 5:8491–8512. doi:10.1021/acssuschemeng.7b02314.
  • Lambert, J.-F., and G. Poncelet. 1997. Acidity in pillared clays: Origin and catalytic manifestations. Top Catal. 4:43–56. doi:10.1023/A:1019175803068.
  • Petersen, K., P. Væggemose Nielsen, G. Bertelsen, M. Lawther, M. B. Olsen, N. H. Nilsson, and G. Mortensen. 1999. Potential of biobased materials for food packaging. Trends Food Sci. Technol. 10:52–68. doi:10.1016/S0924-2244(99)00019-9.
  • Avella, M., J. J. De Vlieger, M. E. Errico, S. Fischer, P. Vacca, and M. G. Volpe. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93:467–474. doi:10.1016/j.foodchem.2004.10.024.
  • Yousuf, B., O. S. Qadri, and A. K. Srivastava. 2018. Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT - Food Sci. Technol. 89:198–209. doi:10.1016/j.lwt.2017.10.051.
  • Cazon, P., G. Velazquez, J. A. Ramirez, and M. Vazquez. 2017. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocoll. 68:136–148. doi:10.1016/j.foodhyd.2016.09.009.
  • Thakur, V. K., and M. K. Thakur. 2014. Recent advances in graft copolymerization and applications of chitosan: A review. ACS Sustain. Chem. Eng. 2:2637–2652. doi:10.1021/sc500634p.
  • Thakur, M. K., V. K. Thakur, R. K. Gupta, and A. Pappu. 2016. Synthesis and applications of biodegradable soy based graft copolymers: A review. ACS Sustain. Chem. Eng. 4:1–17. doi:10.1021/acssuschemeng.5b01327.
  • Azeredo, H. M. C., and K. W. Waldron. 2016. Crosslinking in polysaccharide and protein films and coatings for food contact - A review. Trends Food Sci. Technol. 52:109–122. doi:10.1016/j.tifs.2016.04.008.
  • Singha, A. S., and V. K. Thakur. 2008. Saccaharum cilliare fiber reinforced polymer composites. E-J. Chem. 5:782–791. doi:10.1155/2008/941627.
  • Thakur, V. K., A. S. Singha, and M. K. Thakur. 2012. Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J. Polym. Environ. 20:412–421. doi:10.1007/s10924-011-0389-y.
  • Thakur, V. K., and A. S. Singha. 2010. Mechanical and water absorption properties of natural fibers/polymer biocomposites. Polym.-Plast. Technol. Eng. 49:694–700. doi:10.1080/03602551003682067.
  • Singha, A. S., and V. K. Thakur. 2009. Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym.-Plast. Technol. Eng. 48:482–487. doi:10.1080/03602550902725498.
  • Singha, A. S., and V. K. Thakur. 2010. Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J. Reinf. Plast. Compos. 29:700–709. doi:10.1177/0731684408100354.
  • Sadeghi-Varkani, A., Z. Emam-Djomeh, and G. Askari. 2018. Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. Int. J. Biol. Macromol. 108:1110–1119. doi:10.1016/j.ijbiomac.2017.11.029.
  • Dehghani, S., S. V. Hosseini, and J. M. Regenstein. 2018. Edible films and coatings in seafood preservation: A review. Food Chem. 240:505–513. doi:10.1016/j.foodchem.2017.07.034.
  • Singha, A. S., and V. K. Thakur. 2010. Synthesis and characterization of short grewia optiva fiber-based polymer composites. Polym. Compos. 31:459–470. doi:10.1002/pc.20825.
  • Shah, U., F. Naqash, A. Gani, and F. A. Masoodi. 2016. Art and science behind modified starch edible films and coatings: A review. Compr. Rev. Food Sci. Food Saf. 15:568–580. doi:10.1111/1541-4337.12197.
  • Kerch, G. 2015. Chitosan films and coatings prevent losses of fresh fruit nutritional quality: A review. Trends Food Sci. Technol. 46:159–166. doi:10.1016/j.tifs.2015.10.010.
  • Thakur, V. K., and S. I. Voicu. 2016. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 146:148–165.
  • Elsabee, M. Z., and E. S. Abdou. 2013. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C-Mater. Biol. Appl. 33:1819–1841. doi:10.1016/j.msec.2013.01.010.
  • Madhumitha, G., J. Fowsiya, S. M. Roopan, and V. K. Thakur. 2018. Recent advances in starch-clay nanocomposites. Int. J. Polym. Anal. Charact. 5:1–15. doi:10.1080/1023666X.2018.1447260.
  • Xu, Y. X., K. M. Kim, M. A. Hanna, and D. Nag. 2005. Chitosan-starch composite film: Preparation and characterization. Ind. Crops Prod. 21:185–192. doi:10.1016/j.indcrop.2004.03.002.
  • Mitrus, M., M. Combrzyński, K. Kupryaniuk, A. Wójtowicz, T. Oniszczuk, M. Kręcisz, A. Matysiak, A. Smurzyńska, and L. Mościcki. 2016. A study of the solubility of biodegradable foams of thermoplastic starch. J. Ecol. Eng. 17:184–189. doi:10.12911/22998993/64554.
  • Umaraw, P., and A. K. Verma. 2017. Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Crit. Rev. Food Sci. Nutr. 57:1270–1279. doi:10.1080/10408398.2014.986563.
  • Phan, D., F. Debeaufort, C. Peroval, D. Despré, J. L. Courthaudon, and A. Voilley. 2002. Arabinoxylan-lipid-based edible films and coatings. [3] Influence of drying temperature on film structure and functional properties. J. Agric. Food Chem. 50:2423–2428. doi:10.1021/jf010898r.
  • Kester, J., and O. Fennema. 1986. Edible films and coatings - A review. Food Technol. 40:47–59.
  • Hagenmaier, R., and R. Baker. 1993. Reduction in gas-exchange of citrus-fruit by wax coatings. J. Agric. Food Chem. 41:283–287. doi:10.1021/jf00026a029.
  • Thakur, V. K., M. Thunga, S. A. Madbouly, and M. R. Kessler. 2014. PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv. 4:18240–18249. doi:10.1039/C4RA01894J.
  • Thakur, S., P. P. Govender, M. A. Mamo, S. Tamulevicius, V. K. Thakur. 2017. Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum 146:396–408. doi:10.1016/j.vacuum.2017.05.032.
  • Rhim, J.-W. (2007) Mechanical and water barrier properties of biopolyester films prepared by thermo-compression. Food Sci. Biotechnol. 16:62–66.
  • Lim, L.-T., R. Auras, and M. Rubino. 2008. Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33:820–852. doi:10.1016/j.progpolymsci.2008.05.004.
  • Dubey, S. P., V. K. Thakur, S. Krishnaswamy, H. A. Abhyankar, V. Marchante, and J. L. Brighton. 2017. Progress in environmental-friendly polymer nanocomposite material from PLA: Synthesis, processing and applications. Vacuum 146:655–663. doi:10.1016/j.vacuum.2017.07.009.
  • Bolumar, T., M. L. Andersen, and V. Orlien. 2011. Antioxidant active packaging for chicken meat processed by high pressure treatment. Food Chem. 129:1406–1412. doi:10.1016/j.foodchem.2011.05.082.
  • Camo, J., A. Lorés, D. Djenane, J. A. Beltrán, and P. Roncalés. 2011. Display life of beef packaged with an antioxidant active film as a function of the concentration of oregano extract. Meat Sci. 88:174–178. doi:10.1016/j.meatsci.2010.12.019.
  • Manzanarez-López, F., H. Soto-Valdez, R. Auras, and E. Peralta. 2011. Release of α-tocopherol from poly(lactic acid) films, and its effect on the oxidative stability of soybean oil. J. Food Eng. 104:508–517. doi:10.1016/j.jfoodeng.2010.12.029.
  • Marcos, B., C. Sárraga, M. Castellari, F. Kappen, G. Schennink, and J. Arnau. 2014. Development of biodegradable films with antioxidant properties based on polyesters containing α-tocopherol and olive leaf extract for food packaging applications. Food Packag. Shelf Life 1:140–150. doi:10.1016/j.fpsl.2014.04.002.
  • Laguerre, M., L. J. L. Giraldo, G. Piombo, M. C. Figueroa-Espinoza, M. Pina, M. Benaissa, A. Combe, A. R. Castera, J. Lecomte, and P. Villeneuve. 2009. Characterization of olive-leaf phenolics by ESI-MS and evaluation of their antioxidant capacities by the CAT assay. J. Am. Oil. Chem. Soc. 86:1215–1225. doi:10.1007/s11746-009-1452-x.
  • Miculescu, M., V. K. Thakur, F. Miculescu, and S. I. Voicu. 2016. Graphene-based polymer nanocomposite membranes: A review. Polym. Adv. Technol. 27:844–859. doi:10.1002/pat.3751.
  • Ludueña, L. N., V. A. Alvarez, and A. Vazquez. 2007. Processing and microstructure of PCL/clay nanocomposites. Mater. Sci. Eng. A 460–461:121–129. doi:10.1016/j.msea.2007.01.104.
  • Adame, D., and G. W. Beall. 2009. Direct measurement of the constrained polymer region in polyamide/clay nanocomposites and the implications for gas diffusion. Appl. Clay Sci. 42:545–552. doi:10.1016/j.clay.2008.03.005.
  • Podsiadlo, P., S.-Y. Choi, B. Shim, J. Lee, M. Cuddihy, and N. A. Kotov. 2005. Molecularly engineered nanocomposites: Layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918. doi:10.1021/bm050333u (accessed 14 March 2018).
  • Jia, X., Y. Li, Q. Cheng, S. Zhang, and B. Zhang. 2007. Preparation and properties of poly(vinyl alcohol)/silica nanocomposites derived from copolymerization of vinyl silica nanoparticles and vinyl acetate. Eur. Polym. J. 43:1123–1131. doi:10.1016/j.eurpolymj.2007.01.019.
  • Tang, S., P. Zou, H. Xiong, and H. Tang. 2008. Effect of nano-SiO2 on the performance of starch/polyvinyl alcohol blend films. Carbohydr. Polym. 72:521–526. doi:10.1016/j.carbpol.2007.09.019.
  • van der Walle, G. A. M., G. J. H. Buisman, R. A. Weusthuis, and G. Eggink. 1999. Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxyalkanoates) as the polymer binder. Int. J. Biol. Macromol. 25:123–128. doi:10.1016/S0141-8130(99)00025-2.
  • Bugnicourt, E., P. Cinelli, A. Lazzeri, and V. Alvarez. 2014. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Exp. Polym. Lett. 8:791–808. doi:10.3144/expresspolymlett.2014.82.
  • Hajiali, F., S. Tajbakhsh, and A. Shojaei. 2018. Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: A review. Polym. Rev. 58:164–207. doi:10.1080/15583724.2017.1332640.
  • Lee, S.-R., H.-M. Park, H. Lim, T. Kang, X. Li, W.-J. Cho, and C.-S. Ha. 2002. Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay nanocomposites. Polymer 43:2495–2500. doi:10.1016/S0032-3861(02)00012-5.
  • Chang, J.-H., Y. U. An, and G. S. Sur. 2003. Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J. Polym. Sci. Part B Polym. Phys. 41:94–103. doi:10.1002/polb.10349.
  • Sorrentino, A., G. Gorrasi, and V. Vittoria. 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Technol. 18:84–95. doi:10.1016/j.tifs.2006.09.004.
  • Rydz, J., W. Sikorska, M. Kyulavska, and D. Christova. 2014. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 16:564–596. doi:10.3390/ijms16010564.
  • Scott, G., and D. M. Wiles. 2001. Programmed-life plastics from polyolefins: A new look at sustainability. Biomacromolecules 2:615–622. doi:10.1021/bm010099h.
  • Auras, R. A., S. P. Singh, and J. J. Singh. 2005. Evaluation of oriented poly(lactide) polymers vs. existing PET and oriented PS for fresh food service containers. Packag. Technol. Sci. 18:207–216. doi:10.1002/pts.692.
  • Krzemińska, D., E. Neczaj, and G. Borowski. 2015. Advanced oxidation processes for food industrial wastewater decontamination. J. Ecol. Eng. 16:61–71. doi:10.12911/22998993/1858.
  • Davis, G., and J. H. Song. 2006. Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crops Prod. 23:147–161. doi:10.1016/j.indcrop.2005.05.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.