1,639
Views
3
CrossRef citations to date
0
Altmetric
Articles

Recent approaches in guar gum hydrogel synthesis for water purification

, , , , &
Pages 621-632 | Received 09 May 2018, Accepted 12 Jun 2018, Published online: 24 Sep 2018

References

  • Thakur, V. K., and S. I. Voicu. 2016. Recent advances in cellulose and chitosan based membranes for water purification: a concise review. Carbohydr. Polym. 146:148–165.
  • Thakur, V. K., and M. K. Thakur. 2015. Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol. 72:834–847.
  • Thakur, S., P. P. Govender, M. A. Mamo, S. Tamulevicius, and V. K. Thakur. 2017. Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum. 146:396–408.
  • Thakur, S., and O. Arotiba. 2018. Synthesis, characterization and adsorption studies of an acrylic acid-grafted sodium alginate-based TiO2 hydrogel nanocomposite. Adsorpt. Sci. Technol. 36:458–477.
  • Thakur, S., S. Pandey, and O. A. Arotiba. 2017. Sol-gel derived xanthan gum/silica nanocomposite-a highly efficient cationic dyes adsorbent in aqueous system. Int. J. Biol. Macromol. 103:596–604.
  • Singha, A. S., and V. K. Thakur. 2009. Synthesis, characterisation and analysis of Hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym. Polym. Compos. 17:189–194.
  • Thakur, V. K., A. S. Singha, and M. K. Thakur. 2013. Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int. J. Polym. Mater. Polym. Biomater. 62:226–230.
  • Singha, A. S., and V. K. Thakur. 2008. Fabrication of Hibiscus sabdariffa fibre reinforced polymer composites. Iran Polym. J. 17:541–553.
  • Thakur, S., P. P. Govender, M. A. Mamo, S. Tamulevicius, Y. K. Mishra, and V. K. Thakur. 2017. Progress in lignin hydrogels and nanocomposites for water purification: Future perspectives. Vacuum. 146:342–355.
  • Thakur, S., J. Chaudhary, and B. Sharma. 2018. Sustainability of bioplastics: Opportunities and challenges. Curr. Opin. Green Sustain. Chem. 13:68–75.
  • Thakur, S., A. Verma, B. Sharma, J. Chaudhary, S. Tamulevicius, and V. K. Thakur. 2018. Recent developments in recycling of polystyrene based plastics. Curr. Opin. Green Sustain. Chem. 13:32–38.
  • Thakur, S., and O. A. Arotiba. Synthesis, swelling and adsorption studies of a pH-responsive sodium alginate–poly (acrylic acid) superabsorbent hydrogel. Polym. Bull. 1–20. doi: 10.1007/s00289-018-2287-0
  • Madhumitha, G., J. Fowsiya, S. M. Roopan, and V. K. Thakur. 2018. Recent advances in starch–clay nanocomposites. Int. J. Polym. Anal. Charact. 23:331–345.
  • Patra, A. S., S. Ghorai, D. Sarkar, R. Das, S. Sarkar, and S. Pal. 2017. Anionically functionalized guar gum embedded with silica nanoparticles: an efficient nanocomposite adsorbent for rapid adsorptive removal of toxic cationic dyes and metal ions. Bioresour. Technol. 225:367–376.
  • Du, X., J. Zhou, J. Shi, and B. Xu. 2015. Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials. Chem. Rev. 115:13165–13307.
  • Thakur, V. K., M. K. Thakur, P. Raghavan, and M. R. Kessler. 2014. Progress in green polymer composites from lignin for multifunctional applications: A review. ACS Sustain. Chem. Eng. 2:1072–1092.
  • Pradny, M., M. Vetrik, M. Hruby, and J. Michalek. 2014. Biodegradable porous hydrogels. Adv. Healthcare Mater. 269:293.
  • Trache, D., M. Hazwan Hussin, M. K. Mohamad Haafiz, and V. Kumar Thakur. 2017. Recent progress in cellulose nanocrystals: sources and production. Nanoscale. 9:1763–1786.
  • Tally, M., and Y. Atassi. 2016. Synthesis and characterization of pH-sensitive superabsorbent hydrogels based on sodium alginate-g-poly (acrylic acid-co-acrylamide) obtained via an anionic surfactant micelle templating under microwave irradiation. Polym. Bull. 73:3183–3208.
  • Thakur, M. K., V. K. Thakur, R. K. Gupta, and A. Pappu. 2016. Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustain. Chem. Eng. 4:1–17.
  • Thakur, V. K., M. K. Thakur, and R. K. Gupta. 2013. Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int. J. Biol. Macromol. 61:121–126.
  • Ngah, W. W., L. C. Teong, and M. Hanafiah. 2011. Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 83:1446–1456.
  • Güven, O., M. Şen, E. Karadağ, and D. Saraydın. 1999. A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes1. Radiat. Phys. Chem. 56:381–386.
  • Yogi, R. K., A. Bhattacharya, A. K. Jaiswal, and K. Alok. 2015. Lac, plant resins and gums statistics 2014: At a glance. ICAR-Indian Institute of Natural Resins and Gums, Namkum, Ranchi
  • Thombare, N., U. Jha, S. Mishra, and M. Z. Siddiqui. 2016. Guar gum as a promising starting material for diverse applications: A review. Int. J. Biol. Macromol. 88:361–372.
  • Coale, A. J., and E. M. Hoover. 2015. Population Growth and Economic Development. USA: Princeton University Press.
  • Parija, S., M. Misra, and A. K. Mohanty. 2001. Studies of natural gum adhesive extracts: An overview. J. Macromol. Sci. Part C Polym. Rev. 41:175–197.
  • Zhang, L.-M., J.-F. Zhou, and P. S. Hui. 2005. A comparative study on viscosity behavior of water-soluble chemically modified guar gum derivatives with different functional lateral groups. J. Sci. Food Agric. 85:2638–2644.
  • Sullad, A. G., L. S. Manjeshwar, and T. M. Aminabhavi. 2010. Novel pH-sensitive hydrogels prepared from the blends of poly (vinyl alcohol) with acrylic acid-graft-guar gum matrixes for isoniazid delivery. Ind. Eng. Chem. Res. 49:7323–7329.
  • Gupta, A. P., and D. K. Verma. 2014. Guar gum and their derivatives: a research profile. Int. J. Adv. Res. 2:680–690.
  • Saha, A., S. Tyagi, R. K. Gupta, and Y. K. Tyagi. 2017. Natural gums of plant origin as edible coatings for food industry applications. Crit. Rev. Biotechnol. 37:959–973.
  • Mudgil, D., S. Barak, and B. S. Khatkar. 2014. Guar gum: processing, properties and food applications-a review. J. Food Sci. Technol. 51:409–418.
  • Dai, L., B. Wang, X. An, L. Zhang, A. Khan, and Y. Ni. 2017. Oil/water interfaces of guar gum-based biopolymer hydrogels and application to their separation. Carbohydr. Polym. 169:9–15.
  • Nayak, B. R., and R. P. Singh. 2001. Development of graft copolymer flocculating agents based on hydroxypropyl guar gum and acrylamide. J. Appl. Polym. Sci. 81:1776–1785.
  • Singh, R. P., S. Pal, and D. Mal. 2006. A high performance flocculating agent and viscosifiers based on cationic guar gum. In Macromolecular Symposia, Vol. 242, pp. 227–234. Wiley Online Library
  • Thombare, N., S. Mishra, M. Z. Siddiqui, U. Jha, D. Singh, and G. R. Mahajan. 2018. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr. Polym. 185:169–178.
  • Pathania, D., R. Katwal, G. Sharma, M. Naushad, M. R. Khan, and A. H. Al-Muhtaseb. 2016. Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye. Int. J. Biol. Macromol. 87:366–374.
  • Pal, S., A. S. Patra, S. Ghorai, A. K. Sarkar, V. Mahato, S. Sarkar, and R. P. Singh. 2015. Efficient and rapid adsorption characteristics of templating modified guar gum and silica nanocomposite toward removal of toxic reactive blue and Congo red dyes. Bioresour. Technol. 191:291–299.
  • Blackburn, R. S. 2004. Natural polysaccharides and their interactions with dye molecules: Applications in effluent treatment. Environ. Sci. Technol. 38:4905–4909.
  • Gupta, V. K., D. Pathania, P. Singh, A. Kumar, and B. S. Rathore. 2014. Adsorptional removal of methylene blue by guar gum-cerium (IV) tungstate hybrid cationic exchanger. Carbohydr. Polym. 101:684–691.
  • Wang, Y., and Q.-H. Xu. 2017. Quaternary ammonium cationic tara gum and its application in papermaking. Edited by Chen, J. I-Z and Li Q. In Advanced Materials and Energy Sustainability: Proceedings of the 2016 International Conference on Advanced Materials and Energy Sustainability (AMES2016), pp. 226–232. World Scientific.
  • Kobayashi, S., and E. Oshimura. 2017. Cosmetic composition containing water-soluble moisturizing component and acyl basic amino acid derivative. EP 3228698 A1.
  • Anirudhan, T. S., S. S. Nair, and C. Sekhar. V. 2017. Deposition of gold-cellulose hybrid nanofiller on a polyelectrolyte membrane constructed using guar gum and poly (vinyl alcohol) for transdermal drug delivery. J. Membr. Sci. 539:344–357.
  • Dziadkowiec, J., R. Mansa, A. Quintela, F. Rocha, and C. Detellier. 2017. Preparation, characterization and application in controlled release of ibuprofen-loaded guar gum/montmorillonite bionanocomposites. Appl. Clay Sci. 135:52–63.
  • Tripathy, S., and M. K. Das. 2013. Guar gum: present status and applications. J. Pharma. Sci. Innov. 2:24–28
  • Grasdalen, H., and T. Painter. 1980. NMR studies of composition and sequence in legume-seed galactomannans. Carbohydr. Res. 81:59–66.
  • Garti, N., and M. E. Leser. 2001. Emulsification properties of hydrocolloids. Polym. Adv. Technol. 12:123–135.
  • Whistler, R. L., and J. N. BeMiller. 1993. Industrial Polysaccharides and Their Uses. San Diego, CA: Academic Press.
  • Bai, L., F. Liu, X. Xu, S. Huan, J. Gu, and D. J. McClements. 2017. Impact of polysaccharide molecular characteristics on viscosity enhancement and depletion flocculation. J. Food Eng. 207:35–45.
  • Wang, T., M. Zhang, Z. Fang, Y. Liu, and Z. Gao. 2016. Rheological, textural and flavour properties of yellow mustard sauce as affected by modified starch, xanthan and guar gum. Food Bioprocess. Technol. 9:849–858.
  • Tantry, J. S., and N. S. Mangal. 2001. Rheological study of guar gum. Indian J. Pharm. Sci. 63:74–76.
  • Achayuthakan, P., and M. Suphantharika. 2008. Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum. Carbohydr. Polym. 71:9–17.
  • Ellis, P. R., and E. R. Morris. 1991. Importance of the rate of hydration of pharmaceutical preparations of guar gum; a new in vitro monitoring method. Diabet. Med. 8:378–381.
  • Schierbaum, F. 1971. Glicksman, M. Gum Technology in the Food Industry, Academic Press, New York and London, 1969. XIII, 590 S., 8°, mit zahlreichen Abb. und Tab., Ganzleinen, Preis $27, 50. Starch/Stärke. 23:372–373.
  • Christianson, D. D., J. E. Hodge, D. Osborne, and R. W. Detroy. 1981. Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum. Cereal Chem. 58:513–517.
  • Cheng, Y., R. K. Prud'homme, J. Chik, and D. C. Rau. 2002. Measurement of forces between galactomannan polymer chains: effect of hydrogen bonding. Macromolecules 35:10155–10161.
  • Sandolo, C., P. Matricardi, F. Alhaique, and T. Coviello. 2009. Effect of temperature and cross-linking density on rheology of chemical cross-linked guar gum at the gel point. Food Hydrocoll. 23:210–220.
  • Srichamroen, A. 2007. Influence of temperature and salt on viscosity property of guar gum. Naresuan Univ. J. Sci. Technol. 15:55–62.
  • Wang, S., H. Tang, J. Guo, and K. Wang. 2016. Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum. Carbohydr. Polym. 147:455–463.
  • Patra, A. S., S. Ghorai, S. Ghosh, B. Mandal, and S. Pal. 2016. Selective removal of toxic anionic dyes using a novel nanocomposite derived from cationically modified guar gum and silica nanoparticles. J. Hazard. Mater. 301:127–136.
  • Yoon, S.-J., D.-C. Chu, and L. R. Juneja. 2008. Chemical and physical properties, safety and application of partially hydrolized guar gum as dietary fiber. J. Clin. Biochem. Nutr. 42:1–7.
  • Whistler, R. L. 1993. Introduction to industrial gums. Edited by Whistler, R.L., and BeMiller J. N. In Industrial Gums, 3rd Ed, pp. 1–19. USA: Elsevier.
  • Sharma, R., S. Kalia, B. S. Kaith, and M. K. Srivastava. 2016. Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal. Int. J. Plast. Technol. 20:294–314.
  • Hiremath, J. N., and B. Vishalakshi. 2015. Evaluation of a pH-responsive guar gum-based hydrogel as adsorbent for cationic dyes: Kinetic and modelling study. Polym. Bull. 72:3063–3081.
  • Sharma, R., B. S. Kaith, S. Kalia, D. Pathania, A. Kumar, N. Sharma, R. M. Street, and C. Schauer. 2015. Biodegradable and conducting hydrogels based on guar gum polysaccharide for antibacterial and dye removal applications. J. Environ. Manage. 162:37–45.
  • Thombare, N., U. Jha, S. Mishra, and M. Z. Siddiqui. 2017. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr. Polym. 168:274–281.
  • Maity, J., and S. K. Ray. 2016. Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels. Int. J. Biol. Macromol. 89:246–255.
  • Hiremath, J. N., and B. Vishalakshi. 2016. Effective removal of divalent metal ions: Synthesis and characterization of pH-sensitive guar gum based hydrogels. Desalination Water Treat. 57:4018–4027.
  • Abdel-Halim, E. S., and S. S. Al-Deyab. 2011. Hydrogel from crosslinked polyacrylamide/guar gum graft copolymer for sorption of hexavalent chromium ion. Carbohydr. Polym. 86:1306–1312.
  • Chauhan, K., G. S. Chauhan, and J.-H. Ahn. 2009. Synthesis and characterization of novel guar gum hydrogels and their use as Cu2+ sorbents. Bioresour. Technol. 100:3599–3603.
  • Singh, V., S. Pandey, S. K. Singh, and R. Sanghi. 2009. Removal of cadmium from aqueous solutions by adsorption using poly (acrylamide) modified guar gum–silica nanocomposites. Sep. Purif. Technol. 67:251–261.
  • Jafry, H. R., M. Pasquali, and A. R. Barron. 2011. Effect of functionalized nanomaterials on the rheology of borate cross-linked guar gum. Ind. Eng. Chem. Res. 50:3259–3264.
  • Chandrika, K. S. V. P., A. Singh, D. J. Sarkar, A. Rathore, and A. Kumar. 2014. pH-sensitive crosslinked guar gum-based superabsorbent hydrogels: Swelling response in simulated environments and water retention behavior in plant growth media. J. Appl. Polym. Sci. 131:1–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.