207
Views
4
CrossRef citations to date
0
Altmetric
Articles

Metal chloride-catalyzed acetylation of starch: Synthesis and characterization

ORCID Icon, , , , , & ORCID Icon show all
Pages 577-589 | Received 26 Jul 2018, Accepted 10 Aug 2018, Published online: 17 Sep 2018

References

  • 2016. Chemical economics handbook. Cellulose Acetate Fibers https://www.ihs.com/products/cellulose-acetate-and-triacetate-chemical-economics-handbook.html
  • Edgar, K. J., C. M. Buchanan, J. S. Debenham, P. A. Rundquist, B. D. Seiler, M. C. Shelton, and D. Tindall. 2001. Advances in cellulose ester performance and application. Prog. Polym. Sci. 26:1605–1688.
  • Golachowski, A., T. Zięba, M. Kapelko-Żeberska, W. Drożdż, A. Gryszkin, and M. Grzechac. 2015. Current research addressing starch acetylation. Food Chem. 176:350–356.
  • Ackar, D., J. Babic, A. Jozinović, B. Miličević, S. Jokic, R. Miličević, M. Rajič, and D. Šubarić. 2015. Starch modification by organic acids and their derivatives: a review. Molecules. 20:19554–19570.
  • Abbas, K. A., S. K. Khalil, and A. Hussin. 2010. Modified starches and their usages in selected food products: a review study. Jas. 2:90–100.
  • Ashogbon, A. O., and E. T. Akintayo. 2014. Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch. 66:41–57.
  • Cumpstey, I. 2013. Chemical modification of polysaccharides. ISRN Org. Chem. 2013:1. http://dx.doi.org/10.1155/2013/417672.
  • Cheng, H. N., and Q.-M. Gu. 2012. Enzyme-catalyzed modifications of polysaccharides and poly(ethylene glycol). Polymers. 4:1311–1330.
  • Fox, S. C., B. Li, D. Xu, and K. J. Edgar. 2011. Regioselective esterification and etherification of cellulose: a review. Biomacromolecules. 12:1956–1972.
  • Heinze, T., T. Liebert, and A. Koschella. 2006. Esterification of Polysaccharides. Berlin, Germany: Springer.
  • Li, X., W. Gao, Q. Jiang, L. Huang, and C. Liu. 2011. Study on the morphology, crystalline structure, and thermal properties of fritillaria ussuriensis maxim. Starch acetates with different degrees of substitution. Starch/Stärke. 63:24–31.
  • Lu, K. C., S. Y. Hsieh, L. N. Patkar, C. T. Chen, and C. C. Lin. 2004. Simple and efficient per-O-acetylation of carbohydrates by lithium perchlorate catalyst. Tetrahedron. 60:8967–8973.
  • Doyle, S., R. A. Pethrick, R. K. Harris, J. M. Lane, K. J. Packer, and F. Heatley. 1986. C nuclear magnetic resonance studies of cellulose acetate in the solution and solid states. Polymer. 27:19–24.
  • Iwata, T., A. Fukushima, K. Okamura, and J. Azuma. 1997. DSC study on regioselectively substituted cellulose heteroesters. J. Appl. Polym. Sci. 65:1511–1515.
  • Malm, C. J., L. J. Tanghe, H. M. Herzog, and M. H. Stewart. 1958. Reactivities of lower aliphatic anhydrides toward hydroxyl groups of cellulose. Ind. Eng. Chem. 50:1061–1066.
  • Lee, J. C., C. A. Tai, and S. C. Hung. 2002. Sc(OTf)3-catalyzed acetolysis of 1, 6-anhydro-β-hexopyranoses and solvent-free per-acetylation of hexoses. Tetrahedron Lett. 43:851–865.
  • Shogren, R. 2008. Scandium triflate catalyzed acetylation of starch at low-to-moderate temperatures. Carbohydr. Polym. 72:439–443.
  • Tai, A. A., S. S. Kulkarni, and S. C. Hung. 2003. Facile cu(OTf)2-catalyzed preparation of per-O-acetylated hexopyranoses with stoichiometric acetic anhydride and sequential one-pot anomeric substitution to thioglycosides under solvent-free conditions. J. Org. Chem. 68:8719–8722.
  • Das, S. K., K. A. Reddy, V. L. N. R. Krovvidi, and K. Mukkanti. 2005. InCl3 as a powerful catalyst for the acetylation of carbohydrate alcohols under microwave irradiation. Carbohydr. Res. 340:1387–1392.
  • Ahmad, S., and J. Iqbal. 1987. A new acylation catalyst. J. Chem. Soc. Chem. Commun. 1987:114–115.
  • Dasgupta, F., P. P. Singh, and H. C. Srivastava. 1980. Acetylation of carbohydrates using ferric chloride in acetic anhydride. Carbohydr. Res. 80:346–349.
  • Montero, J. L., J. Y. Winum, A. Leydet, M. Kamal, A. A. Pavia, and J. P. Roque. 1997. A convenient synthesis of peracetylated glycosyl halides using bismuth (III) halides as catalysts. Carbohydr. Res. 297: 175–180.
  • Kartha, K. P. R., and R. A. Field. 1997. Iodine: a versatile reagent in carbohydrate chemistry IV. Per-O-acetylation, regioselective acylation and acetolysis. Tetrahedron. 53:11753–11766.
  • Biswas, A., G. S. Selling, R. L. Shogren, J. L. Willett, C. M. Buchanan, and H. N. Cheng. 2009. Iodine-catalyzed esterification of polysaccharides. Chem. Oggi (Chem. Today). 27:33–35.
  • Cheng, H. N., M. K. Dowd, G. W. Selling, and A. Biswas. 2010. Synthesis of cellulose acetate from cotton byproducts. Carbohydr. Polym. 80:449–453.
  • Liu, C. F., A. P. Zhang, W. Y. Li, F. X. Yue, and R. C. Sun. 2010. Succinoylation of cellulose catalyzed with iodine in ionic liquid. Ind. Crops Prod. 31:363–369.
  • Eranna, P. B., K. K. Pandey, and G. B. Nagarajappa. 2016. A note on the effect of microwave heating on iodine-catalyzed acetylation of wood. J. Wood Chem. Technol. 36:205–210.
  • Jarowenko, W. 1986. Acetylated starch and miscellaneous organic esters. In Modified Starches: Properties and Uses ed.O.B. Wurzburg pp. 55–77 Boca Raton, FL: CRC Press.
  • Rutenberg, M. W., and D. Solarek. 1984. Starch derivatives: Production and uses. In Starch: Chemistry and Technology eds. R.L. Whistler, J.N. Bemiller, E.F. Paschall pp. 312–388. Orlando, FL: Academic Press.
  • Sun, S.,. G. Zhang, and C. Ma. 2016. Preparation, physicochemical characterization and application of acetylated lotus rhizome starches. Carbohydr. Polym. 135:10–17.
  • Colussi, R., S. L. M. El Halal, V. Z. Pinto, J. Bartz, L. C. Gutkoski, E. R. Zavareze, and A. R. G. Dias. 2015. Acetylation of rice starch in an aqueous medium for use in food. LWT–Food Sci. Technol. 62:1076–1082.
  • Osundahunsi, O. F., K. T. Seidu, and R. Mueller. 2014. Effect of presence of sulphurdioxide on acetylation and sorption isotherm of acetylated starches from cultivars of cassava. Food Chem. 151:168–174.
  • Zięba, T., M. Kapelko, and A. Szumny. 2013. Effect of preparation method on the properties of potato starch acetates with an equal degree of substitution. Carbohydr. Polym. 94:193–198.
  • Mbougueng, P. D., D. Tenin, J. Scher, and C. Tchiégang. 2012. Influence of acetylation on physicochemical, functional and thermal properties of potato and cassava starches. J. Food Eng. 108:320–326.
  • Bello-Pérez, L. A., E. Agama-Acevedo, P. B. Zamudio-Flores, G. Mendez-Montealvo, and S. L. Rodriguez-Ambriz. 2010. Effect of low and high acetylation degree in the morphological, physicochemical and structural characteristics of barley starch. LWT – Food. Sci. Technol. 43:1434–1440.
  • Scriven, E. F. V. 1983. 4-Dialkylaminopyridines: super acylation and alkylation catalysts. Chem. Soc. Rev. 12:129–161.
  • Tiwari, P., R. Kumar, P. R. Maulik, and A. K. Misra. 2005. Efficient acetylation of carbohydrates promoted by imidazole. Eur. J. Org. Chem. 2005:4265–4270.
  • Schmidt, J. C. 1985. Process for producing esters of carbohydrate materials. U.S. Patent 4501888.
  • Bushra, M., X. Xu, and S. Pan. 2013. Microwave assisted acetylation of mung bean starch and the catalytic activity of potassium carbonate in free-solvent reaction. Starch/Stärke. 65:236–243.
  • Cao, Y., H. Li, and J. Zhang. 2011. Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind. Eng. Chem. Res. 50:7808–7814.
  • Murugesan, S., N. Karst, T. Islam, J. M. Wiencek, and R. J. Linhardt. 2003. Dialkyl imidazolium benzoates-room temperature ionic liquids useful in the peracetylation and perbenzoylation of simple and sulfated saccharides. Synlett 2003:1283–1286.
  • Forsyth, S. A., D. R. MacFarlane, R. J. Thomson, and M. von Itzstein. 2002. Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chem. Commun. 2002:714–715.
  • Bhaskar, P. M., and D. Loganathan. 1998. Per-O-acetylation of sugars catalysed by montmorillonite K-10. Tetrahed. Lett. 39:2215–2218.
  • Bhaskar, P. M., and D. Loganathan. 2010. H-Beta Zeolite as an efficient catalyst for per-O-acetylation of Mono-and disaccharides. Synlett 30:131.
  • Kumareswaran, R., K. Pachamuthu, and Y. D. Vankar. 2000. Nafion-H catalyzed acetylation of alcohols. Synlett 2000:1652–1654.
  • Tiwari, P., and A. K. Misra. 2006. Acylation of carbohydrates over Al2O3: preparation of partially and fully acylated carbohydrate derivatives and acetylated glycosyl chlorides. Carbohydr. Res. 341:339–350.
  • Misra, A. K., P. Tiwari, and S. K. Madhusudan. 2005. HClO4-SiO2 catalyzed per-O-acetylation of carbohydrates. Carbohydr. Res. 340:325–329.
  • Abbott, A. P., T. J. Bell, S. Handa, and B. Stoddart. 2005. O-Acetylation Of cellulose and monosaccharides using a zinc based ionic liquid. Green Chem. 7:705–707.
  • Yang, Y., L. Song, C. Peng, E. Liu, and H. Xie. 2015. Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem. 17:2758–2763.
  • Falk, H., M. Stanek, and R. Wutka. 1997. Structural aspects of partially acetylated degraded amylopectin – a 13C NMR study. Starch/Stärke. 49:488–491.
  • Kono, H., H. Hashimoto, and Y. Shimizu. 2015. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohydr. Polym. 118:91–100.
  • Cheng, H. N., and L. J. Kasehagen. 1994. Integrated approach for 13C NMR shift prediction, spectral simulation and library search. Anal. Chem. Acta. 285:223–235.
  • Cheng, H. N., and T. G. Neiss. 2012. NMR spectroscopy of food polysaccharides in solution. Polym. Rev. 52:81–114.
  • Warren, F. J., M. J. Gidley, and B. M. Flanagan. 2016. Infrared spectroscopy as a tool to characterise starch ordered structure—a joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 139:35–42.
  • Siesler, H. W. 2011. Vibrational spectroscopy of polymers. Int. J. Polym. Anal. Charac 16:519–541.
  • Chi, H., K. Xu, X. Wu, Q. Chen, D. Xue, C. Song, W. Zhang, and P. Wang. 2008. Effect of acetylation on the properties of corn starch. Food Chem. 106:923–928.
  • Mina, J., A. Valadez-Gonsalez, P. Herrera-Franco, F. Zuluaga, and S. Delwasta. 2011. Physicochemical characterization of natural and acetylated thermoplastic cassava starch. Dyna 78:166–173. http://www.scielo.org.co/pdf/dyna/v78n166/a20v78n166.pdf.
  • Elomaa, M., T. Asplund, P. Soininen, R. Laatikainen, S. Peltonen, S. Hyvarinen, and A. Urtti. 2004. Determination of the degree of substitution of acetylated starch by hydrolysis, 1H NMR and TGA/IR. Carbohydr. Polym. 57:261–267.
  • Gutmann, V. 1976. Solvent effects on the reactivities of organometallic compounds. Coordination. Chem. Rev. 18:225–255.
  • Beckett, M. A., G. C. Strickland, J. R. Holland, and K. S. Varma. 1996. A convenient NMR method for the measurement of lewis acidity at boron centers: correlation of reaction rates of lewis acid initiated epoxide polymerizations with lewis acidity. Polym. Comm. 37:4629–4631.
  • Olah, G. A., S. Kobayashi, and M. Tashiro. 1972. Aromatic substitutions. XXX. Friedel-Crafts Benzylation of benzene and toluene with benzyl and substituted benzyl halides. J. Am. Chem. Soc. 94:7448–7461.
  • Kobayashi, S., T. Busujima, and S. Nagayama. 2000. A novel classification of lewis acids on the basis of activity and selectivity. Chemistry 6:3491–3494.
  • Satchell, D. P. N., and R. S. Satchell. 1969. Quantitative aspects of the lewis acidity of covalent metal halides and their organo derivatives. Chem. Rev. 69:251–278.
  • Laszlo, P., and M. Teston. 1990. Determination of the acidity of lewis acids. J. Am. Chem. Soc. 112:8750–8754.
  • Christe, K. O., D. A. Dixon, D. McLemore, W. W. Wilson, J. A. Sheehy, and J. A. Boatz. 2000. On a quantitative scale for lewis acidity and recent progress in polynitrogen chemistry. J. Fluorine Chem. 101:151–153.
  • Britovsek, G. J. P., J. Ugolotti, and A. J. P. White. 2005. From B(C6F5)3 to B(OC6F5)3: Synthesis of (C6F5)2BOC6F5 and C6F5B(OC6F5)2 and their relative lewis acidity. Organometallics 24:1685–1691.
  • Hilt, G., F. Pünner, J. Mobus, V. Naseri, and M. A. Bohn. 2011. A lewis acidity scale in relation to rate constants of lewis acid catalyzed organic reactions. Eur. J. Org. Chem. 2011:5962–5966.
  • Saito, R., A. Kanazawa, S. Kanaoka, and S. Aoshima. 2016. Cationic polymerization of p-methylstyrene using various metal chlorides: design rationale of initiating systems for controlled polymerization of styrene. Polym. J. 48:933–940.
  • Odian, G. 2004. Principles of Polymerization, 4th ed. Hoboken, NJ: Wiley; pp. 374–378.
  • Borah, R., N. Deka, and J. C. J. Sarma. 1997. Iodine as an acetyl transfer catalyst. J. Chem. Res. 1997:110–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.