252
Views
9
CrossRef citations to date
0
Altmetric
Articles

Evaluation of the performance of microcrystalline cellulose in retarding degradation of two epoxy resin systems

ORCID Icon, , & ORCID Icon
Pages 150-168 | Received 03 Oct 2018, Accepted 19 Dec 2018, Published online: 22 Jan 2019

References

  • Nambiar, S., and J. T. W. Yeow. 2012. Polymer-Composite materials for radiation protection. ACS Appl. Mater. Interfaces. 4:5717–5726.
  • Domun, N., H. Hadavinia, T. Zhang, T. Sainsbury, G. Liaghat, and S. Vahid. 2015. Improving the fracture toughness and the strength of epoxy using nanomaterials–a review of the current status. Nanoscale 7:10294–10329.
  • Gul, S., A. Kausar, M. Mehmood, B. Muhammad, and S. Jabeen. 2016. Progress on epoxy/Polyamide and inorganic nanofiller-based hybrids: Introduction, application, and future potential. Polym. Plast. Technol. Eng. 55:1842–1862.
  • Djouani, F., Y. Zahra, B. Fayolle, M. Kuntz, and J. Verdu. 2013. Degradation of epoxy coatings under gamma irradiation. Radiat. Phys. Chem. 82:54–62.
  • Islam, M. S., K. L. Pickering, and N. J. Foreman. 2011. The effect of accelerated weathering on the mechanical properties of alkali treated hemp fibre/Epoxy composites. J. Adhes.Sci. Technol. 25:1947–1959.
  • Davies, P. 2016. Environmental degradation of composites for marine structures: new materials and new applications. Philos. Trans. A Math. Phys. Eng. Sci. 374:20150272
  • Sullivan, C. J., and C. F. Cooper. 1995. Polyester weatherability: coupling frontier molecular orbital calculations of oxidative stability with accelerated testing. JCT, J. Coat. Technol. 67:53–62.
  • Odegard, G., and A. Bandyopadhyay. 2011. Physical aging of epoxy polymers and their composites. J. Polym. Sci. B Polym. Phys. 49:1695–1716.
  • Martin, R. 2008. Ageing of Composites. Cambridge, The UK: Woodhead Publishing. Elsevier.
  • Startsev, V., M. Lebedev, K. Khrulev, M. Molokov, A. Frolov, and T. Nizina. 2018. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers. Polym. Test. 65:281–296.
  • Nowack, B., R. M. David, H. Fissan, H. Morris, J. A. Shatkin, M. Stintz, R. Zepp, and D. Brouwer. 2013. Potential release scenarios for carbon nanotubes used in composites. Environ. Inter. 59:1–11.
  • Wilén, C. E., and R. Pfaendner. 2013. Improving weathering resistance of flame‐retarded polymers. J. Appl. Polym. Sci. 129:925–944.
  • Asmatulu, R., G. A. Mahmud, C. Hille, and H. E. Misak. 2011. Effects of UV degradation on surface hydrophobicity, crack, and thickness of MWCNT-based nanocomposite coatings. Prog. Org. Coat. 72:553–561.
  • Gottschalk, F., and B. Nowack. 2011. The release of engineered nanomaterials to the environment. J. Environ. Monit. 13:1145–1155.
  • Nguyen, T., B. Pellegrin, C. Bernard, S. Rabb, P. Stuztman, J. M. Gorham, X. Gu, L. L. Yu, and J. W. Chin. 2012. Characterization of surface accumulation and release of nanosilica during irradiation of polymer nanocomposites by ultraviolet light. J. Nanosci. Nanotechnol. 12:6202–6215.
  • Singh, R. P., M. Khait, S. C. Zunjarrao, C. S. Korach, and G. Pandey. 2010. Environmental degradation and durability of epoxy-clay nanocomposites. J. Nanomater. 2010:1.
  • Forsthuber, B., C. Schaller, and G. Grüll. 2013. Evaluation of the photo-stabilizing efficiency of clear coatings comprising organic UV absorbers and mineral UV screeners on wood surfaces. Wood Sci. Technol. 47:281–297.
  • Devi, R. R., and T. K. Maji. 2012. Effect of Nano-ZnO on thermal, mechanical, UV stability, and other physical properties of wood polymer composites. Ind. Eng. Chem. Res. 51:3870–3880.
  • Aloui, F., A. Ahajji, Y. Irmouli, B. George, B. Charrier, and A. Merlin. 2007. Inorganic UV absorbers for the photostabilisation of wood-clearcoating systems: Comparison with organic UV absorbers. Appl. Surf. Sci. 253:3737–3745.
  • Crawford, J. C. 1999. 2(2-Hydroxyphenyl) 2H-benzotriazole ultraviolet stabilizers. Prog. Polym. Sci 24:7–43.
  • Geuskens, G. 1975. Photodegradation of polymers. In Comprehensive Chemical Kinetics, 14:333–424. San Diego: Elsevier.
  • Carbas, R., E. Marques, L. Da Silva, and A. Lopes. 2014. Effect of cure temperature on the glass transition temperature and mechanical properties of epoxy adhesives. J. Adhesion 90:104–119.
  • Tcherbi-Narteh, A., M. Hosur, E. Triggs, P. Owuor, and S. Jelaani. 2014. Viscoelastic and thermal properties of full and partially cured DGEBA epoxy resin composites modified with montmorillonite nanoclay exposed to UV radiation. Polym. Degrad. Stab. 101:81–91.
  • Awaja, F., and P. J. Pigram. 2009. Surface molecular characterisation of different epoxy resin composites subjected to UV accelerated degradation using XPS and ToF-SIMS. Polym. Degrad. Stab. 94:651–658.
  • Tcherbi-Narteh, A., M. Hosur, E. Triggs, and S. Jeelani. 2013. Thermal stability and degradation of diglycidyl ether of bisphenol a epoxy modified with different nanoclays exposed to UV radiation. Polym. Degrad. Stab. 98:759–770.
  • Stewart, A., and E. P. Douglas. 2012. Accelerated testing of epoxy-FRP composites for civil infrastructure applications: property changes and mechanisms of degradation. Polym. Rev. 52:115–141.
  • Petersen, E. J., T. Lam, J. M. Gorham, K. C. Scott, C. J. Long, D. Stanley, R. Sharma, J. Alexander Liddle, B. Pellegrin, and T. Nguyen. 2014. Methods to assess the impact of UV irradiation on the surface chemistry and structure of multiwall carbon nanotube epoxy nanocomposites. Carbon 69:194–205.
  • Ghasemi-Kahrizsangi, A., J. Neshati, H. Shariatpanahi, and E. Akbarinezhad. 2015. Improving the UV degradation resistance of epoxy coatings using modified carbon black nanoparticles. Prog. Org. Coat. 85:199–207.
  • Awad, S. A., C. M. Fellows, and S. S. Mahini. 2018. Effects of accelerated weathering on the chemical, mechanical, thermal and morphological properties of an epoxy/multi-walled carbon nanotube composite. Polym. Test 66:70–77.
  • Nikafshar, S., O. Zabihi, M. Ahmadi, A. Mirmohseni, M. Taseidifar, and M. Naebe. 2017. The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials 10:180.
  • Musto, P., G. Ragosta, P. Russo, and L. Mascia. 2001. Thermal‐Oxidative degradation of epoxy and epoxy‐Bismaleimide networks: kinetics and mechanism. Macromol. Chem. Phys. 202:3445–3458.
  • Nguyen, T., E. J. Petersen, B. Pellegrin, J. M. Gorham, T. Lam, M. Zhao, and L. Sung. 2017. Impact of UV irradiation on multiwall carbon nanotubes in nanocomposites: formation of entangled surface layer and mechanisms of release resistance. Carbon 116:191–200.
  • Yong, A. X. H., G. D. Sims, S. J. P. Gnaniah, S. L. Ogin, and P. A. Smith. 2017. Heating rate effects on thermal analysis measurement of Tg in composite materials. Advanced Manufacturing: Polym. Compos. Sci. 3:43–51.
  • Suits, L. D., and Y. G. Hsuan. 2003. Assessing the photo-degradation of geosynthetics by outdoor exposure and laboratory weatherometer. Geotext. Geomembr. 21:111–122.
  • Shanmugam, N., I. A. Hussein, A. Badghaish, A. N. Shuaib, S. A. Furquan, and M. H. Al-Mehthel. 2015. Evaluation of oil fly ash as a light stabilizer for epoxy composites: Accelerated weathering study. Polym. Degrad. Stab. 112:94–103.
  • Woo, R. S. C., Y. Chen, H. Zhu, J. Li, J.-K. Kim, and C. K. Y. Leung. 2007. Environmental degradation of epoxy–organoclay nanocomposites due to UV exposure. Part I: photo-degradation. Compos. Sci. Technol. 67:3448–3456.
  • Huang, L., Q. Yuan, W. Jiang, L. An, S. Jiang, and R. Li. 2004. Mechanical and thermal properties of glass bead–filled nylon‐6. J. Appl. Polym. Sci. 94:1885–1890.
  • Su, L., X. Zeng, H. He, Q. Tao, and S. Komarneni. 2017. Preparation of functionalized kaolinite/epoxy resin nanocomposites with enhanced thermal properties. Appl. Clay Sci. 148:103–108.
  • Tang, L., and C. Weder. 2010. Cellulose whisker/epoxy resin nanocomposites. ACS Appl. Mater. Interfaces 2:1073–1080.
  • Ninan, N., M. Muthiah, I.-K. Park, A. Elain, S. Thomas, and Y. Grohens. 2013. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohyd. Polym. 98:877–885.
  • Droste, D., and A. Dibenedetto. 1969. The glass transition temperature of filled polymers and its effect on their physical properties. J. Appl. Polym. Sci. 13:2149–2168.
  • Asadi, A., M. Miller, S. Sultana, R. J. Moon, and K. Kalaitzidou. 2016. Introducing cellulose nanocrystals in sheet molding compounds (SMC). Compos. A: Appl. Sci. Manufactur. 88:206–215.
  • Awad, S. A., C. M. Fellows, and S. S. Mahini. 2018. A comparative study of accelerated weathering of epoxy resins based on DGEBA and HDGEBA. J. Polym. Res. 25:103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.